Welcome to visit Advances in New and Renewable Energy!

Research Progresses on Materials of Lithium Ion Battery for Energy Storage

  • LI Wei-shan
Expand
  • Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, Engineering Research Center of Materials and Technology for Electrochemical Energy Storage (Ministry of Education), and School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China

Received date: 2013-07-22

  Revised date: 2013-08-26

  Online published: 2013-08-30

Abstract

Among all the commercial secondary batteries, lithium ion battery presents the best performance in terms of energy density and cyclic stability. Most importantly, there are many alternatives to the current cathode and anode materials and thus further applications of such battery can be expected. In order to improve the performance of lithium ion battery and reduce the cost of fabrication, much considerable research effort has been made on many aspects such as selecting new materials, designing new battery structure, developing new technology on battery preparation and related equipment, improving the battery management system and etc. In this paper, the research progresses on the battery materials are reviewed mainly based on the work that has been conducted in author’s group.

Cite this article

LI Wei-shan . Research Progresses on Materials of Lithium Ion Battery for Energy Storage[J]. Advances in New and Renewable Energy, 2013 , 1(1) : 95 -105 . DOI: 10.3969/j.issn.2095-560X.2013.01.009

References

[1] Cai Z P, Liang Y, Li W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. J. Power Sources, 2009, 189: 547-55.
[2] Lu D S, Li W S, Zuo X X, et al. A study on kinetics of Li+ insertion/desertion in LixMn2O4 (0≤x≤1) by electrochemical impedance spectroscopy[J]. J. Phys. Chem. C, 2007, 111: 12067-12074.
[3] Zeng R H, Li W S, Lu D S, et al. A study on insertion/removal kinetics of lithium ion in LiCrxMn2-xO4 by using powder microelectrode[J]. J. Power Sources, 2007, 174: 592-597.
[4] Tan C L, Zhou H J, Li W S, et al. Performance improvement of LiMn2O4 as cathode material for lithium ion battery with bismuth modification[J]. J. Power Sources, 2008, 184: 408-413.
[5] Xiang X D, Fu Z, Li W S, et al. Morphology-controllable synthesis of LiMn2O4 particles as cathode materials of lithium batteries[J]. J. Solid State Electrochem., 2013, 17: 1201-1206.
[6] Li B Z, Xing L D, Xu M Q, et al. New solution to instability of spinel LiNi0.5Mn1.5O4 as cathode for lithium ion battery at elevated temperature[J]. Electrochemistry Communications, 2013, 34: 48-51.
[7] Li B Z, Wang Y, Xue L, et al. Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery[J]. J. Power Sources, 2013, 232: 12-16.
[8] Xiang X D, Li X Q, Li W S. Preparation and characterization of size-uniform Li[Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery[J]. J. Power Sources, 2013, 230: 89-95.
[9] Geng X Y, Rao M M, Li X P, et al. Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery[J]. J. Solid State Electrochem., 2013, 17: 987-992.
[10] Rao M M, Geng X Y, Li X P, et al. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte[J]. J. Power Sources, 2012, 212: 179-185.
[11] Yi J, Li X P, Hu S J, et al. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery[J]. J. Power Sources, 2011, 196: 6670-6675.
[12] Zhao L Z, Hu S J, Ru Q, et al. Efect of graphite on electrochemical performances of Sn/C composite thin film anodes[J]. J. Power Sources, 2008, 184: 481-484.
[13] Qiu Y C, Chen W, Yang S H, et al. A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries[J]. J. Mater. Chem., 2010, 20: 4439-4444.
[14] 雷建飞, 李伟善. 钛基阳极氧化法制备TiO2纳米管阵列研究进展[J]. 电源技术, 2009, 32: 875-879.
[15] Yi J, Tan C L, Li W S, et al. Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries[J]. Rare Metals, 2010, 29: 505-510.
[16] Yi J, Liu Y L, Wang Y, et al. Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, International Journal of Minerals, Metallurgy and Materials[J]. 2012, 19: 1058-1062.
[17] Yi J, Lu D S, Li X P, et al. Preparation and performance of porous titania with a trimodal pore system as anode of lithium ion battery[J]. J. Solid State Electrochem., 2012, 16: 443-448.
[18] Lei J F, Li W S, Li X P, et al. Arrayed titanium dioxide shells architecture as anode of lithium ion microbattery[J]. J. Power Sources, 2013, 242: 838-843.
[19] Qui Y C, Yan K Y, Yang S H, et al. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into TiO2@TiN/graphene nanocomposites exhibiting high cycling performance for rechargeable lithium ion batteries[J]. ACS Nano, 2010, 4: 6515-26.
[20] Wang Y, Rong H B, Li B Z, et al. Microemulsion-assisted synthesis of ultrafine Li4Ti5O12/C nanocomposite with oleic acid as carbon precursor and particle size controller[J]. J. Power Sources, 2014, 246: 213-218.
[21] Yi J, Li X P, Hu S J, et al. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries[J]. Rare Metals, 2011, 30: 589-594.
[22] Lei J F, Li W S, Li X P, et al. Nanoconic TiO2 hollow spheres: Novel buffers architectured for high-capacity anode materials[J]. J. Mater. Chem., 2012, 22: 22022-22027.
[23] Xing L D, Wang C Y, Li W S, et al. Theoretical insight into oxidative decomposition of propylene carbonate in lithium-ion battery[J]. J. Phys. Chem. B, 2009, 113: 5181-5187.
[24] Xing L D, Li W S, Wang C Y, et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium-ion battery use[J]. J. Phys. Chem. B, 2009, 113: 16596-16602.
[25] Xing L D, Blodin O, Smith G D, et al. Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate[J]. J. Phys. Chem. A, 2011, 115: 13896-13905.
[26] Li T T, Xing L D, Li W S, et al. How does lithium salt anion affect oxidation decomposition reaction of ethylene carbonate: a density functional theory study, J. Power Sources, 2013, 244: 668-674.
[27] Xu M Q, Xiao A, Li W S, et al. Preparation and properties of lithium tetrafluorooxalatophosphate (LiPF4C2O4) as a lithium ion battery electrolyte[J]. Electrochem. Solid-State Letters, 2009, 12: A155-A158.
[28] Xu M Q, Xiao A, Li W S, et al. Investigation of lithium tetrafluorooxalatophosphate [LiPF4(C2O4)] as a lithium ion battery electrolyte for elevated temperature performance[J]. J. Electrochem. Soc., 2010, 157: A115-A120.
[29] Xu M Q, Zhou L, Hao L S, et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium ion batteries[J]. J. Power Sources, 2011, 169: 6794-6801.
[30] 张忠, 许旋, 左晓希, 等. 胺对锂电池电解液中小分子稳定作用的理论研究[J]. 物理化学学报, 2007, 23: 526-530.
[31] Xu M Q, Hao L S, Liu Y L, et al. Experimental and theoretical investigations of dimethyl acetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. J. Phys. Chem. C, 2011, 115: 6085-6094.
[32] Zhou D Y, Li W S, Tan C L, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. J. Power Sources, 2008, 184: 589-592.
[33] Xu M Q, Xing L D. Li W S, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery[J]. J. Power Sources, 2008, 184: 427-431.
[34] Li T T, Xing L, Li W S, et al. Theoretic calculation for understanding oxidation process of 1,4-dimethoxy benzene based compounds as redox shuttles for overcharge protection of lithium ion battery[J]. J. Phys. Chem. A, 2011: 115: 4988-4994.
[35] Li T T, Wang C Y, Xing L D, et al. Reaction mechanism of 1,4-dimethoxy benzene as an overcharge protection additive[J]. Acta Phys.-Chim. Sin., 2012, 28: 818-822.
[36] Xing L D, Wang C Y, Xu M Q, et al. Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery[J]. J. Power Sources, 2009, 189: 689-692.
[37] Xu M Q, Zhou L, Xing L D, et al. Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries[J]. Electrochim. Acta, 2010, 55: 6743-6748.
[38] 许梦清, 邢丽丹, 李伟善. 锂离子电池界面膜形成功能分子的研究现状[J]. 化学进展, 2009, 21: 2017-2027.
[39] Zuo X X, Xu M Q, Li W S, et al. Electrochemical reduction of 1,3-propane sultone on graphite electrode and its application in Li-ion battery[J]. Electrochem. Solid-State Letters, 2006, 9: A196-A199.
[40] 许梦清, 左晓希, 李伟善, 等. 丁磺酸内酯对锂离子电池性能及负极界面的影响[J]. 物理化学学报, 2006, 22, 335-340.
[41] Xu M Q, Li W S, Zuo X X, et al. Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive[J]. J. Power Sources, 2007, 174: 705-710.
[42] Xu M Q, Liu Y L, Li B, et al. Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries[J]. Electrochemistry Communications, 2012, 18: 123-126.
[43] Xu M Q, Li W S, Lucht B L, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium ion batteries[J]. J. Power Sources, 2009, 193: 804-809.
[44] Li B, Xu M Q, Li T T, et al. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Electrochemistry Communications, 2012, 17: 92-95.
[45] Li B, Xu M Q, Li B Z, et al. Properties of solid electrolyte interphase formed by prop-1-ene-1, 3-sultone on graphite anode of Li-ion batteries[J]. Electrochim. Acta, 2013, 105: 1-6.
[46] Liao Y H, Singh P, Li W S, et al. Goodenough, Comparison of Li+ conductivity in Li3?xNb1?xMxO4 (M=W, Mo) with that in Li3?2xNixNbO4[J]. Materials Research Bulletin, 2013, 48: 1372-1375.
[47] Liao Y H, Singh P, Park K S, et al. Goodenough, Li6Zr2O7 interstitial lithium?ion solid electrolyte[J]. Electrochimica Acta, 2013, 102: 446-450.
[48] 卢雷, 左晓希, 刘建生, 等. 锂离子电池P(MMA-Vac)聚合物电解质的制备与性质研究[J]. 化学学报, 2007, 65: 475-480.
[49] Zhou D Y, Wang G Z, Li W S, et al. Preparation and performances of porous P(AN-MMA) membrane for Lithium-ion batteries[J]. J. Power Sources, 2008, 184: 477-480.
[50] Rao M M, Liu J S, Li W S, et al. Preparation and performance analysis of PE supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery applications[J]. J. Membrane Sci., 2008, 322: 314-319.
[51] Liao Y H, Li X P, Fu C H, et al. Polypropylene-supported and nano-Al2O3 doped poly(ethylene oxide)-poly(vinylidene fluoride- hexafluoropropylene)-based gel electrolyte for lithium ion batteries[J]. J. Power Sources, 2011, 196: 2115-2121.
[52] Liao Y H, Zhou D Y, Rao M M, et al. Self-supported poly (methyl methacrylate-acrylonitrile-vinyl acetate) based gel electrolyte for lithium ion battery[J]. J. Power Sources, 2009, 189: 139-144.
[53] Rao M M, Liu J S, Li W S, et al. Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate)[J]. J. Power Sources, 2009, 189: 711-715.
[54] Chen L, Rao M M, Li W S, et al. Performance improvement of polyethylene-supported poly (acrylonitrile-methyl methacrylate-styrene) electrolyte by using urea as foaming agent[J]. Acta Phys.-Chim. Sin. 2011, 27: 1689-1694.
[55] Fu Z, Feng H L, Sun C J, et al. Influence of solvent type on porosity structure and properties of polymer separator for the Li-ion batteries[J]. J. Solid State Electrochem., 2013, 17: 2167-2172
[56] Rao M M, Liu J S, Li W S, et al. Polyethylene-supported poly(acrylonitrile-co-methyl methacrylate)/nano-Al2O3 microporous composite polymer electrolyte for lithium ion battery[J]. J. Solid State Electrochem., 2010, 191: 255-261.
[57] Liao Y H, Rao M M, Li W S, et al. Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery[J]. J. Membrane Sci., 2010, 352: 95-99.
[58] Liao Y H, Li X P, Fu C H, et al. Performance improvement of polyethylene supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano-Al2O3[J]. J. Power Sources, 2011, 196: 6723-6728.
[59] Liu J S, Li W S, Zuo X X, et al. Polyethylene-supported polyvinylidene ?uoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery[J]. J. Power Sources, 2013, 226, 101-106.
[60] Rao M M, Geng X Y, Liao Y H, et al. Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery[J]. J. Membrane Science, 2012, 399-400: 37-42.
[61] Liao Y H, Sun C J, Hu S J, et al. Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery[J]. Electrochim. Acta, 2013, 89: 461-468.
[62] Li X P, Rao M M, Liao Y H, et al. Non-woven fabric supported poly(acrylonitrile-vinyl acetate) gel electrolyte for lithium ion battery use[J]. J. Appl. Electrochem., 2010, 40: 2185-2191.
[63] Liao Y H, Park K S, Xiao P H, et al. Goodenough, Sodium intercalation behavior of layered NaxNbS2 (0≤x≤1)[J]. Chemistry of Materials, 2013, 25: 1699-1705.
Outlines

/