[1] Cai Z P, Liang Y, Li W S, et al. Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. J. Power Sources, 2009, 189: 547-55.
[2] Lu D S, Li W S, Zuo X X, et al. A study on kinetics of Li+ insertion/desertion in LixMn2O4 (0≤x≤1) by electrochemical impedance spectroscopy[J]. J. Phys. Chem. C, 2007, 111: 12067-12074.
[3] Zeng R H, Li W S, Lu D S, et al. A study on insertion/removal kinetics of lithium ion in LiCrxMn2-xO4 by using powder microelectrode[J]. J. Power Sources, 2007, 174: 592-597.
[4] Tan C L, Zhou H J, Li W S, et al. Performance improvement of LiMn2O4 as cathode material for lithium ion battery with bismuth modification[J]. J. Power Sources, 2008, 184: 408-413.
[5] Xiang X D, Fu Z, Li W S, et al. Morphology-controllable synthesis of LiMn2O4 particles as cathode materials of lithium batteries[J]. J. Solid State Electrochem., 2013, 17: 1201-1206.
[6] Li B Z, Xing L D, Xu M Q, et al. New solution to instability of spinel LiNi0.5Mn1.5O4 as cathode for lithium ion battery at elevated temperature[J]. Electrochemistry Communications, 2013, 34: 48-51.
[7] Li B Z, Wang Y, Xue L, et al. Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery[J]. J. Power Sources, 2013, 232: 12-16.
[8] Xiang X D, Li X Q, Li W S. Preparation and characterization of size-uniform Li[Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery[J]. J. Power Sources, 2013, 230: 89-95.
[9] Geng X Y, Rao M M, Li X P, et al. Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery[J]. J. Solid State Electrochem., 2013, 17: 987-992.
[10] Rao M M, Geng X Y, Li X P, et al. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte[J]. J. Power Sources, 2012, 212: 179-185.
[11] Yi J, Li X P, Hu S J, et al. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery[J]. J. Power Sources, 2011, 196: 6670-6675.
[12] Zhao L Z, Hu S J, Ru Q, et al. Efect of graphite on electrochemical performances of Sn/C composite thin film anodes[J]. J. Power Sources, 2008, 184: 481-484.
[13] Qiu Y C, Chen W, Yang S H, et al. A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries[J]. J. Mater. Chem., 2010, 20: 4439-4444.
[14] 雷建飞, 李伟善. 钛基阳极氧化法制备TiO2纳米管阵列研究进展[J]. 电源技术, 2009, 32: 875-879.
[15] Yi J, Tan C L, Li W S, et al. Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries[J]. Rare Metals, 2010, 29: 505-510.
[16] Yi J, Liu Y L, Wang Y, et al. Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, International Journal of Minerals, Metallurgy and Materials[J]. 2012, 19: 1058-1062.
[17] Yi J, Lu D S, Li X P, et al. Preparation and performance of porous titania with a trimodal pore system as anode of lithium ion battery[J]. J. Solid State Electrochem., 2012, 16: 443-448.
[18] Lei J F, Li W S, Li X P, et al. Arrayed titanium dioxide shells architecture as anode of lithium ion microbattery[J]. J. Power Sources, 2013, 242: 838-843.
[19] Qui Y C, Yan K Y, Yang S H, et al. Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into TiO2@TiN/graphene nanocomposites exhibiting high cycling performance for rechargeable lithium ion batteries[J]. ACS Nano, 2010, 4: 6515-26.
[20] Wang Y, Rong H B, Li B Z, et al. Microemulsion-assisted synthesis of ultrafine Li4Ti5O12/C nanocomposite with oleic acid as carbon precursor and particle size controller[J]. J. Power Sources, 2014, 246: 213-218.
[21] Yi J, Li X P, Hu S J, et al. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries[J]. Rare Metals, 2011, 30: 589-594.
[22] Lei J F, Li W S, Li X P, et al. Nanoconic TiO2 hollow spheres: Novel buffers architectured for high-capacity anode materials[J]. J. Mater. Chem., 2012, 22: 22022-22027.
[23] Xing L D, Wang C Y, Li W S, et al. Theoretical insight into oxidative decomposition of propylene carbonate in lithium-ion battery[J]. J. Phys. Chem. B, 2009, 113: 5181-5187.
[24] Xing L D, Li W S, Wang C Y, et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium-ion battery use[J]. J. Phys. Chem. B, 2009, 113: 16596-16602.
[25] Xing L D, Blodin O, Smith G D, et al. Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate[J]. J. Phys. Chem. A, 2011, 115: 13896-13905.
[26] Li T T, Xing L D, Li W S, et al. How does lithium salt anion affect oxidation decomposition reaction of ethylene carbonate: a density functional theory study, J. Power Sources, 2013, 244: 668-674.
[27] Xu M Q, Xiao A, Li W S, et al. Preparation and properties of lithium tetrafluorooxalatophosphate (LiPF4C2O4) as a lithium ion battery electrolyte[J]. Electrochem. Solid-State Letters, 2009, 12: A155-A158.
[28] Xu M Q, Xiao A, Li W S, et al. Investigation of lithium tetrafluorooxalatophosphate [LiPF4(C2O4)] as a lithium ion battery electrolyte for elevated temperature performance[J]. J. Electrochem. Soc., 2010, 157: A115-A120.
[29] Xu M Q, Zhou L, Hao L S, et al. Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium ion batteries[J]. J. Power Sources, 2011, 169: 6794-6801.
[30] 张忠, 许旋, 左晓希, 等. 胺对锂电池电解液中小分子稳定作用的理论研究[J]. 物理化学学报, 2007, 23: 526-530.
[31] Xu M Q, Hao L S, Liu Y L, et al. Experimental and theoretical investigations of dimethyl acetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. J. Phys. Chem. C, 2011, 115: 6085-6094.
[32] Zhou D Y, Li W S, Tan C L, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. J. Power Sources, 2008, 184: 589-592.
[33] Xu M Q, Xing L D. Li W S, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery[J]. J. Power Sources, 2008, 184: 427-431.
[34] Li T T, Xing L, Li W S, et al. Theoretic calculation for understanding oxidation process of 1,4-dimethoxy benzene based compounds as redox shuttles for overcharge protection of lithium ion battery[J]. J. Phys. Chem. A, 2011: 115: 4988-4994.
[35] Li T T, Wang C Y, Xing L D, et al. Reaction mechanism of 1,4-dimethoxy benzene as an overcharge protection additive[J]. Acta Phys.-Chim. Sin., 2012, 28: 818-822.
[36] Xing L D, Wang C Y, Xu M Q, et al. Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery[J]. J. Power Sources, 2009, 189: 689-692.
[37] Xu M Q, Zhou L, Xing L D, et al. Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries[J]. Electrochim. Acta, 2010, 55: 6743-6748.
[38] 许梦清, 邢丽丹, 李伟善. 锂离子电池界面膜形成功能分子的研究现状[J]. 化学进展, 2009, 21: 2017-2027.
[39] Zuo X X, Xu M Q, Li W S, et al. Electrochemical reduction of 1,3-propane sultone on graphite electrode and its application in Li-ion battery[J]. Electrochem. Solid-State Letters, 2006, 9: A196-A199.
[40] 许梦清, 左晓希, 李伟善, 等. 丁磺酸内酯对锂离子电池性能及负极界面的影响[J]. 物理化学学报, 2006, 22, 335-340.
[41] Xu M Q, Li W S, Zuo X X, et al. Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive[J]. J. Power Sources, 2007, 174: 705-710.
[42] Xu M Q, Liu Y L, Li B, et al. Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries[J]. Electrochemistry Communications, 2012, 18: 123-126.
[43] Xu M Q, Li W S, Lucht B L, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium ion batteries[J]. J. Power Sources, 2009, 193: 804-809.
[44] Li B, Xu M Q, Li T T, et al. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Electrochemistry Communications, 2012, 17: 92-95.
[45] Li B, Xu M Q, Li B Z, et al. Properties of solid electrolyte interphase formed by prop-1-ene-1, 3-sultone on graphite anode of Li-ion batteries[J]. Electrochim. Acta, 2013, 105: 1-6.
[46] Liao Y H, Singh P, Li W S, et al. Goodenough, Comparison of Li+ conductivity in Li3?xNb1?xMxO4 (M=W, Mo) with that in Li3?2xNixNbO4[J]. Materials Research Bulletin, 2013, 48: 1372-1375.
[47] Liao Y H, Singh P, Park K S, et al. Goodenough, Li6Zr2O7 interstitial lithium?ion solid electrolyte[J]. Electrochimica Acta, 2013, 102: 446-450.
[48] 卢雷, 左晓希, 刘建生, 等. 锂离子电池P(MMA-Vac)聚合物电解质的制备与性质研究[J]. 化学学报, 2007, 65: 475-480.
[49] Zhou D Y, Wang G Z, Li W S, et al. Preparation and performances of porous P(AN-MMA) membrane for Lithium-ion batteries[J]. J. Power Sources, 2008, 184: 477-480.
[50] Rao M M, Liu J S, Li W S, et al. Preparation and performance analysis of PE supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery applications[J]. J. Membrane Sci., 2008, 322: 314-319.
[51] Liao Y H, Li X P, Fu C H, et al. Polypropylene-supported and nano-Al2O3 doped poly(ethylene oxide)-poly(vinylidene fluoride- hexafluoropropylene)-based gel electrolyte for lithium ion batteries[J]. J. Power Sources, 2011, 196: 2115-2121.
[52] Liao Y H, Zhou D Y, Rao M M, et al. Self-supported poly (methyl methacrylate-acrylonitrile-vinyl acetate) based gel electrolyte for lithium ion battery[J]. J. Power Sources, 2009, 189: 139-144.
[53] Rao M M, Liu J S, Li W S, et al. Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate)[J]. J. Power Sources, 2009, 189: 711-715.
[54] Chen L, Rao M M, Li W S, et al. Performance improvement of polyethylene-supported poly (acrylonitrile-methyl methacrylate-styrene) electrolyte by using urea as foaming agent[J]. Acta Phys.-Chim. Sin. 2011, 27: 1689-1694.
[55] Fu Z, Feng H L, Sun C J, et al. Influence of solvent type on porosity structure and properties of polymer separator for the Li-ion batteries[J]. J. Solid State Electrochem., 2013, 17: 2167-2172
[56] Rao M M, Liu J S, Li W S, et al. Polyethylene-supported poly(acrylonitrile-co-methyl methacrylate)/nano-Al2O3 microporous composite polymer electrolyte for lithium ion battery[J]. J. Solid State Electrochem., 2010, 191: 255-261.
[57] Liao Y H, Rao M M, Li W S, et al. Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery[J]. J. Membrane Sci., 2010, 352: 95-99.
[58] Liao Y H, Li X P, Fu C H, et al. Performance improvement of polyethylene supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate based gel polymer electrolyte by doping nano-Al2O3[J]. J. Power Sources, 2011, 196: 6723-6728.
[59] Liu J S, Li W S, Zuo X X, et al. Polyethylene-supported polyvinylidene ?uoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery[J]. J. Power Sources, 2013, 226, 101-106.
[60] Rao M M, Geng X Y, Liao Y H, et al. Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery[J]. J. Membrane Science, 2012, 399-400: 37-42.
[61] Liao Y H, Sun C J, Hu S J, et al. Anti-thermal shrinkage nanoparticles/polymer and ionic liquid based gel polymer electrolyte for lithium ion battery[J]. Electrochim. Acta, 2013, 89: 461-468.
[62] Li X P, Rao M M, Liao Y H, et al. Non-woven fabric supported poly(acrylonitrile-vinyl acetate) gel electrolyte for lithium ion battery use[J]. J. Appl. Electrochem., 2010, 40: 2185-2191.
[63] Liao Y H, Park K S, Xiao P H, et al. Goodenough, Sodium intercalation behavior of layered NaxNbS2 (0≤x≤1)[J]. Chemistry of Materials, 2013, 25: 1699-1705.