Welcome to visit Advances in New and Renewable Energy!
Orginal Article

Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System

  • LI Yi-man ,
  • PANG Zhong-he
Expand
  • 1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. Institute of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2017-12-01

  Revised date: 2018-02-02

  Online published: 2018-08-31

Abstract

Carbonate calcium scaling is one of the obstacles in utilizing high-temperature geothermal resources in China's Himalaya tectonic zone and it forms due to the higher quotient (Q) of Ca2+ and CO32- than their equilibrium constant (K), which is typically caused by the increase of pH values. Usually, geochemical processes, including boiling, case corrosion, depressurization during upwelling, and gases intrusion, lead to the increase of pH value and boiling always plays a dominant role. In this paper, a systematic method for assessing the scaling tendency, depth and amounts was proposed. First, based on the geochemical processes happened from the reservoir to surface, the geothermal fluid compositions was reconstructed by analyzing the surface samples, and then the tendency of scaling was predicted by calculating the Ryznar index and saturation index. Secondly, the scaling depth was detected by caliper logging or quantitatively assessed by using wellbore simulation and geochemical simulation. There are three ways to assess the total scale amount: the difference of Ca2+ between wellhead and reservoir fluid, equilibrium simulation, and scale thickness in pipes. For a scaling well in the western area of Sichuan basin, the scale amount was up to 151 ~ 300 kg or 1 ~ 3 cm thick within 48 production hours. The carbonate calcium scale formation analysis and quantitative assessment could provide guidance for scale prevention and inhibition.

Cite this article

LI Yi-man , PANG Zhong-he . Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System[J]. Advances in New and Renewable Energy, 2018 , 6(4) : 274 -281 . DOI: 10.3969/j.issn.2095-560X.2018.04.004

References

[1] ATKINSON G, RAJU K, HOWELL R O.The thermodynamics of scale prediction[C]//SPE International Symposium on Oilfield Chemistry. Anaheim, California: SPE, 1991: 209-215. DOI: 10.2118/21021-MS.
[2] ARNÓRSSON S. Mineral deposition from Icelandic geothermal waters: environmental and utilization problems[J]. Journal of petroleum technology, 1981, 33(1): 181-187. DOI: 10.2118/7890-PA.
[3] 王延欣, 刘世良, 边庆玉, 等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202-206. DOI: 10.3969/j.issn.2095-560X.2015.03.007.
[4] ARNÓRSSON S, SIGURDSSON S, SVAVARSSON H. The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0° to 370°C[J]. Geochimica et cosmochimica acta, 1982, 46(9): 1513-1532. DOI: 10.1016/0016-7037(82)90311-8.
[5] BJARNASON J Ö.The speciation program WATCH[M]. version 2.1. Orkustofnun: Reykjavík, Iceland. 1994: 7. DOI: 10.1007/s12665-016-6112-5.
[6] REED M H, SPYCHER N F, PALANDRI J.Users guide for CHIM-XPT: a program for computing reaction processes in aqueous-mineral-gas systems and MINTAB guide[M]. version 2.43. Eugene, Oregon: University of Oregon, 2012.
[7] PARKHURST D L,APPELO C A J. User’s guide to PHREEQC (version 2) - A computer program for speciation, batch reaction, one dimensional transport and inverse geochemical calculation[R]. U.S. Geological Survey Water-Resource investigations report 97-4259, 1999: 312.
[8] BAI L P.Chemical modelling programs for predicting calcite scaling, applied to low temperature geothermal waters in Iceland[R]. UNU-GTP, Iceland, report 3, 1991: 45.
[9] RAHMANI M R.Assessment of calcite scaling potential in the geothermal wells of the NW-Sabalan geothermal prospect[R]. NW-Iran. Report 19, 2007: 447-460.
[10] WANGYAL P.Calcite deposition related to temperature and boiling in some Icelandic geothermal wells[R]. UNU-GTP, Iceland, report 11, 1992: 33.
[11] QUINAO J J, BUSCARLET E, SIEGA F.Early identification and management of calcite deposition in the Ngatamariki geothermal field, New Zealand[C]// Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2017: 9.
[12] SUEHIRO Y, NAKAJIMA M, YAMADA K, et al.Critical parameters of {xCO2+ (1-x)CHF3} forx= (1.0000, 0.7496, 0.5013, and 0.2522)[J]. Journal of chemical thermodynamics, 1996, 28(10): 1153-1164. DOI: 10.1006/jcht.1996.0101.
[13] SPAN R, WAGNER W.A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of physical and chemical reference data, 1996, 25(6): 1509-1596. DOI: 10.1063/1.555991.
[14] ANGUS S, ARMSTRONG B, DE REUCK K M. International thermodynamic tables of the fluid state, vol. 3 carbon dioxide[M]. New York: Pergamon, 1976: 385.
[15] ARNÓRSSON S. Deposition of calcium carbonate minerals from geothermal waters-theoretical considerations[J]. Geothermics, 1989, 18(1/2): 33-39. DOI: 10.1016/0375-6505(89)90007-2.
[16] BÉNÉZETH P, STEFÁNSSON A, GAUTIER Q, et al. Mineral solubility and aqueous speciation under hydrothermal conditions to 300 °C - the carbonate system as an example[J]. Reviews in mineralogy and geochemistry, 2013, 76(1): 81-133. DOI: 10.2138/rmg.2013.76.4.
[17] PLUMMER L N, BUSENBERG E.The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et cosmochimica acta, 1982, 46(6): 1011-1040. DOI: 10.1016/0016-7037(82)90056-4.
[18] ELLIS A J.The solubility of calcite in sodium chloride solutions at high temperatures[J]. American journal of science, 1963, 261(3): 259-267. DOI: 10.2475/ajs.261.3.259.
[19] SEGNIT E R, HOLLAND H D, BISCARDI C J.The solubility of calcite in aqueous solutions—I the solubility of calcite in water between 75° and 200° at CO2 pressures up to 60 atm[J]. Geochimica et cosmochimica acta, 1962, 26(12): 1301-1331. DOI: 10.1016/0016-7037(62)90057-1.
[20] JACOBSON R L, LANGMUIR D.Dissociation constants of calcite and CaHCO3+ from 0 to 50°C[J]. Geochimica et cosmochimica acta, 1974, 38(2): 301-318. DOI: 10.1016/0016-7037(74)90112-4.
[21] SASS E, MORSE J W, MILLERO F J.Dependence of the values of calcite and aragonite thermodynamic solubility products on ionic models[J]. American journal of science, 1983, 283(3): 218-229. DOI: 10.2475/ajs.283.3.218.
[22] BERNER R A.The solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5% salinity[J]. American journal of science, 1976, 276(6): 713-730. DOI: 10.2475/ajs.276.6.713.
[23] GLEDHILL D K, MORSE J W.Calcite solubility in Na-Ca-Mg-Cl brines[J]. Chemical geology, 2006, 233(3/4): 249-256. DOI: 10.1016/j.chemgeo.2006.03.006.
[24] NICHOLSON K.Geothermal fluids: chemistry and exploration techniques[M]. Berlin-Heidelberg: Springer- Verlag, 1993: 263. DOI: 10.1007/978-3-642-77844-5.
[25] WANNER C, EICHINGER F, JAHRFELD T, DIAMOND L W.Causes of abundant calcite scaling in geothermal wells in the Bavarian Molasse Basin, Southern Germany[J]. Geothermics, 2017, 70: 324-338. DOI: 10.1016/j.geothermics.2017.05.001.
[26] ARNÓRSSON S. Precipitation of calcite from flashed geothermal waters in Iceland[J]. Contributions to mineralogy and petrology, 1978, 66(1): 21-28. DOI: 10.1007/BF00376082.
[27] TRUESDELL A H, FOURNIER R O.Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy[J]. Journal of Research U.S.Geological Survey, 1977, 5: 49-52.
[28] GIRIARSO J P, THAMRIN M H, SIAHAAN E E.Enhancement of silica-enthalpy mixing model to predict enthalpy of geothermal reservoir[C]//42nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-15, 2017.
[29] LIENAU P J, LUOIS B C.Geothermal direct use engineering and design guidebook. Energy Conversation Consumption &Utilization, 1990: 149-166.
[30] AKIN T, GUNEY A, KARGI H.Modeling of calcite scaling and estimation of gas breakout depth in a geothermal well by using PHREEQC[C]//Proceedings of the 40th Workshop on Geothermal Reservoir Engineering. Stanford, CA, US: Stanford University, 2015: 8.
[31] BJORNSSON G.A multi-feedzone geothermal wellbore simulator[R]. Technical Report LBL-23546, Berkeley: Lawrence Berkeley Laboratory, 1987: 102. DOI: 10.2172/6569407.
[32] GUNN F, FREESTON D.An integrated steady-state wellbore simulation and analysis package[C]//Proceedings of the 13th New Zealand Geothermal Workshop. Auckland, NZ: New Zealand Geothermal Workshop, 1991: 161-166.
[33] GSDS. GSDS GeoData - GeoData manager, steamfield manager, Wellsim. Geothermal science & data solutions (GSDS)[EB/OL]. http://www.gsds.co.nz/wellsim-downloads/. 2017.10.
[34] ZHANG Y P, DAWE R.The kinetics of calcite precipitation from a high salinity water[J]. Applied geochemistry, 1998, 13(2): 177-184. DOI: 10.1016/S0883-2927(97)00061-9.
[35] ZHANG Y P, SHAW H, FARQUHAR R, et al.The kinetics of carbonate scaling - application for the prediction of downhole carbonate scaling[J]. Journal of petroleum science and engineering, 2001, 29(2): 85-95. DOI: 10.1016/S0920-4105(00)00095-4.
[36] DAWE R A, ZHANG Y P.Kinetics of calcium carbonate scaling using observations from glass micromodels[J]. Journal of petroleum science and engineering, 1997, 18(3/4): 179-187. DOI: 10.1016/S0920-4105(97)00017-X.
[37] ZHANG Y P, FARQUHAR R.Laboratory determination of calcium carbonate scaling rates for oilfield wellbore environments[C]//Proceedings of International Symposium on Oilfield Scale. Aberdeen, UK: Society of Petroleum Engineers, 2001. DOI: 10.2118/68329-MS.
[38] ÁMANNSSON H.Predicting calcite deposition in Krafla boreholes[J]. Geothermics, 1989, 18(1/2): 25-32. DOI: 10.1016/0375-6505(89)90006-0.
[39] 张恒, 胡亚召, 云智汉, 等. 水文地球化学模拟技术在康定某高温地热井结垢研究中的应用[J]. 新能源进展, 2016, 4(2): 111-117. DOI: 10.3969/j.issn.2095-560X. 2016.02.006.
Outlines

/