Welcome to visit Advances in New and Renewable Energy!
Orginal Article

Development and Design Method of Point Focus Solar Furnace

  • ZHANG Xi-liang ,
  • CUI Zhi-ying ,
  • ZANG Chun-cheng ,
  • ZHU Hui-bin ,
  • BAI Feng-wu ,
  • WANG Zhi-feng
Expand
  • 1. Key Laboratory of Solar Thermal Energy and Photovoltaic System, Chinese Academy of Sciences, Beijing 100190, China;
    2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    3. Beijing Engineering Research Center of Solar Thermal Power, Beijing 100190, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-04-10

  Revised date: 2018-05-02

  Online published: 2018-08-31

Abstract

In this paper, a detail introduction to the manufacturing procedure of the point-focused solar furnace was presented from four parts: focusing principle of the solar furnace, optical calculation process, hardware design and installation and testing. According to the actual needs of users and the local solar energy resources, the illuminating area on the plane of the secondary concentrator and the thermal power could be estimated by self-programmed software. Sequentially, the core components of the solar furnace were designed based on the optics calculation results. The modular design of the heliostat both improved the production efficiency with lower cost and simplified the bracket structure. At the same time, it is more convenient for transporting and installation. Each unit reflector of the heliostat had 12 supportive points, which brought the more benefit when leveling the mirror. The similar modular design was taken when designing the secondary concentrator for the reduction of the manufacturing costs, the ease of transport and on-site installation. Each facet of the concentrator was adjustable which significantly enhanced the adaptability of point focus solar furnace. The feasibility of the design method is verified by prototype development.

Cite this article

ZHANG Xi-liang , CUI Zhi-ying , ZANG Chun-cheng , ZHU Hui-bin , BAI Feng-wu , WANG Zhi-feng . Development and Design Method of Point Focus Solar Furnace[J]. Advances in New and Renewable Energy, 2018 , 6(4) : 288 -296 . DOI: 10.3969/j.issn.2095-560X.2018.04.006

References

[1] LASZLO T S.Measurement and application of high heat fluxes in a solar furnace[J]. Solar energy, 1962, 6(2): 69-73. DOI: 10.1016/0038-092X(62)90007-5.
[2] 杨仲青. 八米直径高温太阳炉的建造[J]. 硅酸盐学报, 1966, 5(2): 119-122. DOI: 10.14062/j.issn.0454-5648. 1966.02.008.
[3] NEUMANN A, GROER U.Experimenting with concentrated sunlight using the DLR solar furnace[J]. Solar energy, 1996, 58(4/6): 181-190. DOI: 10.1016/ S0038-092X(96)00079-5.
[4] BJORNDALEN N.High temperature solar furnace: current applications and future potential[J]. Energy sources, 2003, 25(2): 153-159. DOI: 10.1080/00908310390142217.
[5] LÓPEZ I P, BENOIT H, GAUTHIER D, et al. On-sun operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid[J]. Solar energy, 2016, 137: 463-476. DOI: 10.1016/j.solener.2016.08.034.
[6] HO C K.Advances in central receivers for concentrating solar applications[J]. Solar energy, 2017, 152: 38-56. DOI: 10.1016/j.solener.2017.03.048.
[7] WANG F Q, CHENG Z M, TAN J Y, et al.Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review[J]. Renewable and sustainable energy reviews, 2017, 79: 1314-1328. DOI: 10.1016/j.rser.2017.05.174.
[8] 余仲奎, 宗权英. 适用于材料科学研究的3000℃热源——高温太阳炉[J]. 太阳能学报, 1980, 1(1): 109-111.
[9] ROLDÁN M I, MONTERREAL R. Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace[J]. Applied energy, 2014, 120: 65-74. DOI: 10.1016/j.apenergy.2014.01.029.
[10] TROMBE F, LE PHAT VINH A. Thousand kW solar furnace, built by the National Center of Scientific Research, in Odeillo (France)[J]. Solar energy, 1973, 15(1): 57-61. DOI: 10.1016/0038-092X(73)90006-6.
[11] 刘淑玲, 刘志明, 钟山. 二次反射定日镜太阳炉[J]. 太阳能, 1993(4): 22-23.
[12] RISKIEV T T, SULEIMANOV S K H. Double mirror polyheliostat solar furnace of 1000 kW thermal power[J]. Solar energy materials, 1991, 24(1/4): 625-632. DOI: 10.1016/0165-1633(91)90096-4.
[13] KEVANE C J.Construction and operation of the Arizona State College solar furnace[J]. Solar energy, 1957, 1(2/3): 99-101. DOI: 10.1016/0038-092X(57)90129-9.
[14] SCHUBNELL M, KELLER J, IMHOF A.Flux density distribution in the focal region of a solar concentrator system[J]. Journal of solar energy engineering, 1991, 113(2): 112-116. DOI: 10.1115/1.2929954.
[15] RIVEROS-ROSAS D, HERRERA-VÁZQUEZ J, PÉREZ-RÁBAGO C A, et al. Optical design of a high radiative flux solar furnace for Mexico[J]. Solar energy, 2010, 84(5): 792-800. DOI: 10.1016/j.solener.2010.02.002.
[16] RODRÍGUEZ J, CAÑADAS I, ZARZA E. PSA vertical axis solar furnace SF5[J]. Energy procedia, 2014, 49: 1511-1522. DOI: 10.1016/j.egypro.2014.03.160.
[17] PEREZ-ENCISO R, RIVEROS-ROSAS D, SANCHEZ M, et al.Three-dimensional analysis of solar radiation distribution at the focal zone of the solar furnace of IER_UNAM[J]. Energy procedia, 2014, 57: 3031-3040. DOI: 10.1016/j.egypro.2014.10.339.
[18] 电工所承担研制的国内最大太阳炉在宁夏竣工[N]. 电气技术, 2010(12): 69.
[19] 郭明焕. 太阳定日镜的误差分析和聚光性能评价方法研究[D]. 北京: 中国科学院研究生院, 2011.
[20] ZHAO D M, XU E S, WANG Z F, et al.Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector[J]. Renewable energy, 2016, 94: 197-212. DOI: 10.1016/j.renene.2016.03.036.
[21] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. Hoboken: Wiley, 2013.
[22] 余强, 徐二树, 常春, 等. 塔式太阳能电站定日镜场的建模与仿真[J]. 中国电机工程学报, 2012, 32(23): 90-97. DOI: 10.13334/j.0258-8013.pcsee.2012.23.017.
[23] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009-2012[S]. 北京: 中国建筑工业出版社, 2012.
Outlines

/