[1] PANT D, SINGH A, VAN BOGAERT G, et al.An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2): 1305-1313. DOI: 10.1016/j.rser.2010.10.005.
[2] 杨永刚, 孙国萍, 许玫英. 微生物燃料电池在环境污染治理研究中的应用进展[J]. 微生物学报, 2010, 50(7): 847-852.
[3] JANICEK A, FAN Y Z, LIU H.Design of microbial fuel cells for practical application: A review and analysis of scale-up studies[J]. Biofuels, 2014, 5(1): 79-92. DOI: 10.4155/bfs.13.69.
[4] CHENG S, LIU H, LOGAN B E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing[J]. Environmental Science Technology, 2006, 40(7): 2426-2432. DOI: 10.1021/es051652w.
[5] VILAS BOAS J, OLIVEIRA V B, MARCON L R C, et al. Performance optimization of a single chamber microbial fuel cell using Lactobacillus pentosus[J]. World Hydrogen Energy Conference, 2016, 20(12): 2576-2580. DOI: hdl.handle.net/10216/105958.
[6] VILAS BOAS J, OLIVEIRA V B, MARCON L R C, et al. Effect of operating and design parameters on the performance of a microbial fuel cell with Lactobacillus pentosus[J]. Biochemical Engineering Journal, 2015, 104(15): 34-40. DOI: 10.1016/j.bej.2015.05.009.
[7] VENKIDUSAMY K, MEGHARAJ M.A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments[J]. Frontiers in Microbiology, 2016, 7(1071): 3391-3402. DOI: 10.3389/ fmicb.2016.01071.
[8] XIAO Y, ZHENG Y, WU S, et al.Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China[J]. Frontiers in Microbiology, 2015, 6(16): 1410-1421. DOI: 10.3389/ fmicb.2015.01410.
[9] 范梦婕, 陈柳柳, 徐源, 等. 微生物燃料电池阴极材料研究进展[J]. 化工新型材料, 2017, 45(6): 26-28.
[10] TANG J H, YUAN Y, LIU T, et al.High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells[J]. Journal of Power Sources, 2015, 274(15): 170-176. DOI: 10.1016/j. jpowsour.2014.10.035.
[11] GIL G C, CHANG I S, KIM B H, et al.Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors Bioelectronics, 2003, 18(4): 327-334. DOI: 10.1016/S0956-5663(02)00110-0.
[12] RAHIMNEJAD M, ADHAMI A, DARVARI S, et al.Microbial fuel cell as new technology for bioelectricity generation: a review[J]. Alexandria Engineering Journal, 2015, 54(3): 745-756. DOI: 10.1016/j.jpowsour.2014.10. 035.
[13] GUDE V G.Wastewater treatment in microbial fuel cells- an overview[J]. Journal of Cleaner Production, 2016, 122(20):287-307. DOI: 10.1016/j.jclepro.2016.02. 022.
[14] LIU H R.RAMNARAYANAN, LOGAN B E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell[J]. Environmental Science Technology, 2004, 38(7): 2281-2285. DOI: 10.1021/es034923g.
[15] LIU Y, HARNISCH F, FRICKE K, et al.The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells[J]. Biosensors Bioelectronics, 2010, 25(9): 2167-2171. DOI: 10.1016/j.bios.2010.01.016.
[16] RABAEY K, CLAUWAERT P, AELTERMAN P, et al.Tubular Microbial Fuel Cells for Efficient Electricity Generation[J]. Environmental Science Technology, 2005, 39(20): 8077-8082. DOI: 10.1021/es050986i.
[17] DEWAN A, BEYENAL H, LEWANDOWSKI Z.Scaling up microbial fuel cells[J]. Environ. Sci. Technol, 2008, 42(20): 7643-7648. DOI: 10.1021/es800775d.
[18] MIN B, KIM J R, OH S E, et al.Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39(20):4961-4968. DOI: 10.1016/ j.watres.2005.09.039.
[19] OH S E, LOGAN B E.Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells[J]. Applied Microbiology Biotechnology, 2006, 70(2): 162-169. DOI: 10.1007/ s00253-005-0066-y.
[20] MIN B, LOGAN B E.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science Technology, 2004, 38(21): 5809-5814. DOI: 10.1021/es 0491026.
[21] NIMJE V R, CHEN C Y, CHEN C C.Glycerol degradation in single-chamber microbial fuel cells[J]. Bioresource Technology, 2011, 102(3): 2629-2634. DOI: 10.1016/j.biortech.2010.10.062.
[22] CHENG S A, LOGAN B E.Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3): 492-496. DOI: 10.1016/j. elecom.2006.10.023.
[23] WANG X, CHENG S, FENG Y, et al.Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science Technology, 2009, 43(17): 6870-6874. DOI: 10.1021/es900997w.
[24] ZHAO F, RAHUNEN N, VARCOE J R, et al.Activated carbon cloth as anode for sulfate removal in a microbial fuel cell[J]. Environmental Science Technology, 2008, 42(13): 4971-4976. DOI: 10.1021/es8003766.
[25] TER HEIJINE A, HAMELERS H V, SAAKES M, et al.Performance of non-porous graphite and titanium based anodes in microbial fuel cells[J]. Electrochimica Acta, 2008, 53(18): 5697-5703. DOI: 10.1016/j.electacta. 2008. 03.032.
[26] QIAO Y, BAO S J, LI C M.Nanostructured polyaniline/ titanium dioxide composite anode for microbial fuel cells[J]. ACS Nano, 2008, 2(1): 113-119. DOI: 10.1021/nn700102s.
[27] ZHAO C E, WANG W J, SUN D, et al.Nanostructured graphene/TiO2 hybrids as high-performance an odes fur microbial fuel cells[J]. Chemistry-A European Journal, 2014, 20(23): 7091-7097. DOI: 10.1002/chem. 201400272.
[28] DUMAS C, MOLLICA A, FERON D, et al.Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials[J]. Electrochimica Acta, 2007, 53(2): 468-473. DOI: 10.1016/j.electacta. 2007. 06.069.
[29] DUMAS C, BASSEGUY R, BERGEL A.Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes[J]. Electrochimica Acta, 2008, 53(16): 5235-5241. DOI: 10.1016 /j.electacta.2008.02.056.
[30] ZHANG Y Z, MO G Q, LIX Q, et al.A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, l96(13): 5402-5407. DOI: 10.1016/j.jpowsour.2011.02.067.
[31] CHAUDHURI S K, LOVELY D R.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10): 1229-1232. DOI: 10.1038/nbt867.
[32] LOGAN B E, CHENG S, WATSON V, et al.Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells[J]. Environmental Science Technology, 2007, 41(9): 3341-3346. DOI: 10.1021/es062644y.
[33] WU S J, HE W H, YANG W L, et al.Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater[J]. Journal of Power Sources, 2017, 356(1): 348-355. DOI: 10.1016/j. jpowsour. 2017.01.041.
[34] DEKKER A, HEIJNE A T, SAAKES M, et al.Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell[J]. Environmental Science Technology, 2009, 43(23): 9038-9042. DOI: 10.1021/es901939r.
[35] JIANG D, LIX, RAYMOND D, et al.Power recovery with multi-anode/cathode microbial fuel cells suitable for future large-scale applications[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8683-8689. DOI: 10.1016/j.ijhydene.2010.04.136.
[36] FENGY, YANG Q, WANG X, et al.Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844. DOI: 10.1016/j.jpowsour.2009.10.030.
[37] XIE X, HU L B, PASTAM, et al. Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel Cells[J]. Nano Letter, 2011, 11(1): 291-296. DOI: 10.1021/nl103905t.
[38] CHEN S L, HOU H Q, HARNISCH F, et al.Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells[J]. Energy Environmental Science, 2011, 4(20): 1417-1421. DOI: 10.1039/C0EE00446D.
[39] YONG Y C, DONG X C, CHAN-PARK M B, et al. Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells[J]. ACS Nano, 2012, 6(3): 2394-2400. DOI: 10.1021/nn204656d.
[40] HOU J X, LIU Z L, YANG S Q, et al.Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258(15): 204-209. DOI: 10.1016/j. jpowsour.2014.02.035.
[41] SHEN Y, ZHOU Y, CHEN S, et al.Carbon nanofibers modified graphite felt for high performance anode in high substrate concentration microbial fuel cells[J]. Science World Journal, 2014, 2014(2014): 1-5. DOI: 10.1155/2014/130185.
[42] CUI H F, DU L, GUO P B, et al.Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high performance microbial fuel cell anode[J]. Journal of Power Sources, 2015, 283(1): 46-53. DOI: 10.1016/j.jpowsour.2015.02.088.
[43] ZHAO S L, LI Y C, YIN H J, et al.Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells[J]. Science Advances, 2015, 1(10): 1-8. DOI: 10.1126/sciadv.1500372.
[44] ZHOU Y, TANG L J, LIU Z L, et al.A novel anode fabricated by three-dimensional printing for use in urine-powered microbial fuel cell[J]. Biochemical Engineering Journal. 2017, 124: 36-43. DOI: 10.1016/j. bej.2017.04.012.
[45] CHEN S, HE G, HU X, et al.A three-dimensionally ordered macroporous carbon derived from a natural resource as anode for microbial bioelectrochemical systems[J]. ChemSusChem, 2012, 5(6): 1059-1063. DOI: 10.1002/cssc.201100783.
[46] CHEN S, HE G, LIU Q, et al.Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis[J]. Energy Environmental Science, 2012, 5(12): 9769-9772. DOI: 10.1039/C2EE23344D.
[47] YUAN Y, ZHOU S G, LIU Y, et al.Nanostructured Macroporous Bioanode Based on Polyaniline- Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells[J]. Environmental Science Technology, 2013, 47(24): 14525-14532. DOI: 10.1021/es404163g.
[48] ZHENG J L, CHENG C X, ZHANG J, et al.Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23156-23163. DOI: 10.1016/j.ijhydene.2016.11. 003.
[49] ZHANG J, LI J, YE D D, et al.Tubular bamboo charcoal for anode in microbial fuel cells[J]. Journal of Power Sources, 2014, 272(25): 277-282. DOI: 10.1016/j. jpowsour.2014.08.115.
[50] KARTHIKETAN R, WANG B, XUAN J, et al.Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157(1): 314-323. DOI: 10.1016/j.electacta.2015.01.029.
[51] WU X S, QIAO Y, SHI Z Z, et al.Enhancement of interfacial bioelectrocatalysis in Shewanella microbial fuel cells by a hierarchical porous carbon-silica composite derived from distiller's grains[J]. Sustainable Energy Fuels, 2018, 2(2): 655-662. DOI: 10.1039/ C7SE00560A.
[52] CHEN Q, PU W H, HOU H J, et al.Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249: 567-573. DOI: 10.1016/j. biortech.2017.09.086.
[53] YUAN H R, DONG G, LI D N, et al.Steamed cake-derived 3D carbon foam with surface anchored carbon nanoparticles as freestanding anodes for high-performance microbial fuel cells[J]. Science of the Total Environment. 2018, 636:1081-1088. DOI: 10.1016/ j.scitotenv. 2018.04.367.