The Qingdao Blue Silicon Valley region has abundant geothermal resources for its special geological structure. However, due to the low degree of exploration and lacks comprehensive evaluation, the utilizing form of geothermal resources is single, and the high-quality geothermal resources are serious waste. In this paper, geotechnical thermal response test based on lineal heat source model was used for field test to study the geotechnical thermal physical properties of buried test holes in the Blue Silicon Valley region. Result of the 48-hour test data analysis showed that, the calculated thermal conductivity of the soil was 2.278 W/(m∙K), which ensures the heat transfer capability of the ground source heat pump. Furthermore, the summer conditions were simulated by using column-heat-source model, it turn out that the fluid temperature trends were similar with the experimental ones. The simulated inlet and outlet temperatures were 35.1°C and 30.4°C, which were in good agreement with the experimental temperatures of 35.1°C and 30.8°C. This work may provide some guides for the analysis of the thermal physical properties of the ground source heat pump and the integrated development of the Blue Silicon geothermal resources.
ZHU Chuan-sheng
,
YE Can-tao
,
ZHANG Dong-dong
,
LIU Guang-ping
,
LIU Xi
,
GONG Yu-lie
. Soil Thermal Properties Test and Analysis in Qingdao Blue Silicon Valley[J]. Advances in New and Renewable Energy, 2018
, 6(4)
: 326
-332
.
DOI: 10.3969/j.issn.2095-560X.2018.04.011
[1] 万延森, 张耆年. 青岛即墨温泉成因的探讨[J]. 黄渤海海洋, 1987, 5(3): 27-32.
[2] 陈超, 任艳, 王永菲, 等. 竖直地埋管换热器传热性能的模拟与实验分析[J]. 湖南大学学报(自然科学版), 2009, 36(12): 49-53.
[3] 王军刚. 地下岩土热物性测试准确性影响因素与机理研究[D]. 济南: 山东建筑大学, 2014.
[4] 于明志, 方肇洪. 现场测量深层岩土热物性方法[J]. 工程热物理学报, 2002, 23(3): 354-356. DOI: 10.3321/ j.issn:0253-231X.2002.03.027.
[5] AUSTIN W A.Development of an In situ System for measuring ground thermal properties[D]. Oklahoma: Oklahoma State University, 1998.
[6] 颜亮, 王沣浩, 余斌. 地源热泵岩土热物性现场测试方法评价[J]. 暖通空调, 2011, 41(2): 75-79. DOI: 10.3969/j.issn.1002-8501.2011.02.018.
[7] 卢军, 黄光勤, 徐永军. 定热流热响应实验确定岩土热物性方法[J]. 土木建筑与环境工程, 2012, 34(2): 98-104. DOI: 10.3969/j.issn.1674-4764.2012.02.016.
[8] 于明志, 彭晓峰, 方肇洪, 等. 基于线热源模型的地下岩土热物性测试方法[J]. 太阳能学报, 2006, 27(3): 279-283. DOI: 10.3321/j.issn:0254-0096.2006.03.013.
[9] 杨卫波, 施明恒, 陈振乾. 基于解析法的地下岩土热物性现场测试方法的探讨[J]. 建筑科学, 2009, 25(8): 60-64. DOI: 10.3969/j.issn.1002-8528.2009.08.014.
[10] 章云根, 汤昌福, 张文永, 等. 岩土热响应测试曲线自动拟合方法[J]. 安徽理工大学学报(自然科学版), 2014, 34(4): 73-76. DOI: 10.3969/j.issn.1672-1098.2014. 04.016.
[11] 常桂钦, 廖全, 彭清元, 等. 土壤源热泵岩土热物性测试的参数分析[J]. 煤气与热力, 2011, 31(5): 5-10. DOI: 10.3969/j.issn.1000-4416.2011.05.002.
[12] 桂树强, 程晓辉, 张志鹏. 地源热泵桩基与钻孔埋管换热器换热性能比较[J]. 土木建筑与环境工程, 2013, 35(3): 151-156. DOI: 10.11835/j.issn.1674-4764.2013.03.024.
[13] 中华人民共和国建设部. 地源热泵系统工程技术规范(2009版): GB50366-2005[S]. 北京: 中国建筑工业出版社, 2006.
[14] INGERSOLL L R, PLASS H J.Theory of the ground pipe heat source for the heat pump[J]. ASHVE transactions, 1948, 47: 339-348.
[15] CARSLAW H S, JAEGER J C.Conduction of heat in solids[M]. Oxford: Oxford University Press, 1986.