[1] FUJISHIMA A.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI: 10.1038/238037a0.
[2] 李秋叶, 吕功煊. 光催化分解水制氢研究新进展[J]. 分子催化, 2007, 21(6): 590-598.
[3] WU L P, QIU Y, XI M, et al.Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity[J]. New journal of chemistry, 2015, 39(6): 4766-4773. DOI: 10.1039/C5NJ00373C.
[4] 龙明策, 蔡俊, 蔡伟民, 等. 设计新型可见光响应的半导体光催化剂[J]. 化学进展, 2006, 18(9): 1065-1075. DOI: 10.3321/j.issn:1005-281X.2006.09.001.
[5] 赵瑞, 罗川, 谭振江, 等. CdS基半导体纳米材料的研究进展[J]. 吉林师范大学学报(自然科学版), 2017, 38(1): 33-38.
[6] LIU Y, ZHOU L, HU Y, et al.Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment[J]. Journal of materials chemistry, 2011, 21(45): 18359-18364. DOI: 10.1039/C1JM13789A.
[7] RAN J R, ZHANG J, YU J G, et al.Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical society reviews, 2014, 43(22): 7787-7812. DOI: 10.1039/C3CS60425J.
[8] WONG A B, BRITTMAN S, YU Y, et al.Core-shell CdS-Cu2S nanorod array solar cells[J]. Nano letters, 2015, 15(6): 4096-4101. DOI: 10.1021/acs.nanolett.5b01203.
[9] PAN Z X, ZHANG H, CHENG K, et al.Highly efficient inverted Type-I CdS/CdSe core/shell structure QD-sensitized solar cells[J]. ACS Nano, 2012, 6(5): 3982-3991. DOI: 10.1021/nn300278z.
[10] FERANCOVÁ A, RENGARAJ S, KIM Y, et al.Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation[J]. Biosensors and bioelectronics, 2010, 26(2): 314-320. DOI: 10.1016/j.bios.2010.08.026.
[11] LIU Y, ZHANG P, TIAN B Z, et al.Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde[J]. ACS applied materials & interfaces, 2015, 7(25): 13849-13858. DOI: 10.1021/acsami.5b04128.
[12] SHEN Q Q, XUE J B, ZHAO H C, et al.The role of crystalline TiO2 nanoparticle in enhancing the photocatalytic and photoelectrocatalytic properties of CdS nanorods[J]. Journal of alloys and compounds, 2017, 695: 1080-1087. DOI: 10.1016/j.jallcom.2016.10.233.
[13] PATEL N H, DESHPANDE M P, CHAKI S H.Study on structural, magnetic properties of undoped and Ni doped CdS nanoparticles[J]. Materials science in semiconductor processing, 2015, 31: 272-280. DOI: 10.1016/j.mssp. 2014.11.039.
[14] WANG F X, LIANG L, CHEN K L, et al.CO2 induced template approach to fabricate the porous C/CdS visible photocatalyst with superior activity and stability[J]. Journal of molecular catalysis A: chemical, 2016, 425: 76-85. DOI: 10.1016/j.molcata.2016.09.034.
[15] SIMON T, CARLSON M T, STOLARCZYK J K, et al.Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods[J]. ACS energy letters, 2016, 1(6): 1137-1142. DOI: 10.1021/acsenergylett.6b00468.
[16] ZHANG P, LIU Y, TIAN B Z, et al.Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde[J]. catalysis today, 2017, 281: 181-188. DOI: 10.1016/j.cattod.2016.05.042.
[17] WU L P, LI J, ZHANG S H, et al.Effect of ordered TiO2 nanotube array substrate on photocatalytic performance of CdS-sensitized ZnO nanorod arrays[J]. Journal of physical chemistry C, 2013, 117(44): 22591-22597. DOI: 10.1021/jp408527r.
[18] LI J, WU L P, LONG L Z, et al.Preparation of titania nanotube-Cd0.65Zn0.35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production[J]. Applied surface science, 2014, 322: 265-271. DOI: 10.1016/j.apsusc.2014.10.020.
[19] WU L P, ZHANG Y L, LONG L Z, et al.Effect of ZnS buffer layers in ZnO/ZnS/CdS nanorod array photoelectrode on the photoelectrochemical performance[J]. RSC advances, 2014, 4(40): 20716-20721. DOI: 10.1039/c4ra00005f.
[20] WU L P, ZHANG M Y, LI J, et al.TiO2 nanotube/ZnO nanorod/CdS on Ti mesh with three-dimensional array structure for photocatalytic degradation under visible light irradiation[J]. Research on chemical intermediates, 2016, 42(5): 4569-4580. DOI: 10.1007/s11164-015-2297-6.
[21] 王斌, 高飞, 何斌, 等. CdS/TiO2复合纳米粒子的光学性质[J]. 物理化学学报, 2003, 19(1): 21-24.
[22] BANERJEE S, MOHAPATRA S K, DAS P P, et al.Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS[J]. Chemistry of materials, 2008, 20(21): 6784-6791. DOI: 10.1021/cm802282t.
[23] ARABZADEH A, SALIMI A.One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation[J]. Journal of colloid and interface science, 2016, 479: 43-54. DOI: 10.1016/j.jcis.2016.06.036.
[24] LIU S Q, ZHANG N, TANG Z R, et al.Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell[J]. ACS applied materials & interfaces, 2012, 4(11): 6378-6385. DOI: 10.1021/am302074p.
[25] CHEN Z, XU Y J.Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity[J]. ACS applied materials & interfaces, 2013, 5(24): 13353-13363. DOI: 10.1021/am4043068.
[26] LONG L Z, YU X, WU L P, et al.Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination[J]. Nanotechnology, 2014, 25(3): 35603. DOI: 10.1088/ 0957-4484/25/3/035603.
[27] WU L P, ZHANG Y L, LI X J, et al.CdS nanorod arrays with TiO2 nano-coating for improved photostability and photocatalytic activity[J]. Physical chemistry chemical physics, 2014, 16(29): 15339-15345. DOI: 10.1039/ C4CP01347F.
[28] 周建伟, 褚亮亮, 王储备, 等. 机械化学合成CdS/TiO2复合纳米材料及其光催化性能研究[J]. 人工晶体学报, 2015, 44(9): 2590-2596.
[29] 张清林, 曹尚操, 夏明霞, 等. 利用拉曼和表面光电压谱对一维TiO2@CdS核壳结构界面电荷行为研究[J]. 化学学报, 2013, 71(4): 634-638. DOI: 10.6023/A12100810.
[30] MENG H L, CUI C, SHEN H L, et al.Synthesis and photocatalytic activity of TiO2@CdS and CdS@TiO2 double-shelled hollow spheres[J]. Journal of alloys and compounds, 2012, 527: 30-35. DOI: 10.1016/j.jallcom. 2012.02.043.
[31] 汪婷. 花球状CdIn2S4/CdS的制备及其光电流的研究[J]. 化工技术与开发, 2016, 45(6): 19-22. DOI: 10.3969/j.issn.1671-9905.2016.06.006.
[32] JIANG A Q, LEE H J, KIM G H, et al.The inlaid Al2O3 tunnel switch for ultrathin ferroelectric films[J]. Advanced materials, 2009, 21(28): 2870-2875. DOI: 10.1002/adma.200802924.
[33] NING X F, ZHEN W L, WU Y Q, et al.Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation[J]. Applied catalysis B: environmental, 2018, 226: 373-383. DOI: 10.1016/j.apcatb.2017.12.067.