Welcome to visit Advances in New and Renewable Energy!
Orginal Article

Effect of TiO2 Nano-Film Thickness on the Photoelectrochemical Performance and Stability of CdS Nanorod Arrays

  • WU Liang-peng ,
  • WANG Xiao-yang ,
  • LI Juan ,
  • YANG Xu ,
  • LI Xin-jun
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2018-03-10

  Revised date: 2018-09-28

  Online published: 2018-10-31

Abstract

CdS nanorod arrays (CdSNRA) were grown on fluorine-doped tin oxide glass substrates via a hydrothermal process, and TiO2 layers with different thicknesses were coated on CdS nanorods surface via dip-coating under mild conditions. The morphology and structure of CdSNRA@TiO2 were characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and ultraviolet-visible spectroscopy. Effect of TiO2 nano-film thickness on the photoelectrochemical performance and stability of CdSNRA@TiO2 was studied, results showed that the best performance was obtained with thickness of 50 nm. The improved photoactivity was ascribed to the efficient separation of photogenerated electrons and holes between CdS cores and TiO2 shells.

Cite this article

WU Liang-peng , WANG Xiao-yang , LI Juan , YANG Xu , LI Xin-jun . Effect of TiO2 Nano-Film Thickness on the Photoelectrochemical Performance and Stability of CdS Nanorod Arrays[J]. Advances in New and Renewable Energy, 2018 , 6(5) : 359 -364 . DOI: 10.3969/j.issn.2095-560X.2018.05.004

References

[1] FUJISHIMA A.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. DOI: 10.1038/238037a0.
[2] 李秋叶, 吕功煊. 光催化分解水制氢研究新进展[J]. 分子催化, 2007, 21(6): 590-598.
[3] WU L P, QIU Y, XI M, et al.Fabrication of TiO2 nanotubes-assembled hierarchical microspheres with enhanced photocatalytic degradation activity[J]. New journal of chemistry, 2015, 39(6): 4766-4773. DOI: 10.1039/C5NJ00373C.
[4] 龙明策, 蔡俊, 蔡伟民, 等. 设计新型可见光响应的半导体光催化剂[J]. 化学进展, 2006, 18(9): 1065-1075. DOI: 10.3321/j.issn:1005-281X.2006.09.001.
[5] 赵瑞, 罗川, 谭振江, 等. CdS基半导体纳米材料的研究进展[J]. 吉林师范大学学报(自然科学版), 2017, 38(1): 33-38.
[6] LIU Y, ZHOU L, HU Y, et al.Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment[J]. Journal of materials chemistry, 2011, 21(45): 18359-18364. DOI: 10.1039/C1JM13789A.
[7] RAN J R, ZHANG J, YU J G, et al.Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical society reviews, 2014, 43(22): 7787-7812. DOI: 10.1039/C3CS60425J.
[8] WONG A B, BRITTMAN S, YU Y, et al.Core-shell CdS-Cu2S nanorod array solar cells[J]. Nano letters, 2015, 15(6): 4096-4101. DOI: 10.1021/acs.nanolett.5b01203.
[9] PAN Z X, ZHANG H, CHENG K, et al.Highly efficient inverted Type-I CdS/CdSe core/shell structure QD-sensitized solar cells[J]. ACS Nano, 2012, 6(5): 3982-3991. DOI: 10.1021/nn300278z.
[10] FERANCOVÁ A, RENGARAJ S, KIM Y, et al.Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation[J]. Biosensors and bioelectronics, 2010, 26(2): 314-320. DOI: 10.1016/j.bios.2010.08.026.
[11] LIU Y, ZHANG P, TIAN B Z, et al.Core-shell structural CdS@SnO2 nanorods with excellent visible-light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde[J]. ACS applied materials & interfaces, 2015, 7(25): 13849-13858. DOI: 10.1021/acsami.5b04128.
[12] SHEN Q Q, XUE J B, ZHAO H C, et al.The role of crystalline TiO2 nanoparticle in enhancing the photocatalytic and photoelectrocatalytic properties of CdS nanorods[J]. Journal of alloys and compounds, 2017, 695: 1080-1087. DOI: 10.1016/j.jallcom.2016.10.233.
[13] PATEL N H, DESHPANDE M P, CHAKI S H.Study on structural, magnetic properties of undoped and Ni doped CdS nanoparticles[J]. Materials science in semiconductor processing, 2015, 31: 272-280. DOI: 10.1016/j.mssp. 2014.11.039.
[14] WANG F X, LIANG L, CHEN K L, et al.CO2 induced template approach to fabricate the porous C/CdS visible photocatalyst with superior activity and stability[J]. Journal of molecular catalysis A: chemical, 2016, 425: 76-85. DOI: 10.1016/j.molcata.2016.09.034.
[15] SIMON T, CARLSON M T, STOLARCZYK J K, et al.Electron transfer rate vs recombination losses in photocatalytic H2 generation on Pt-decorated CdS nanorods[J]. ACS energy letters, 2016, 1(6): 1137-1142. DOI: 10.1021/acsenergylett.6b00468.
[16] ZHANG P, LIU Y, TIAN B Z, et al.Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde[J]. catalysis today, 2017, 281: 181-188. DOI: 10.1016/j.cattod.2016.05.042.
[17] WU L P, LI J, ZHANG S H, et al.Effect of ordered TiO2 nanotube array substrate on photocatalytic performance of CdS-sensitized ZnO nanorod arrays[J]. Journal of physical chemistry C, 2013, 117(44): 22591-22597. DOI: 10.1021/jp408527r.
[18] LI J, WU L P, LONG L Z, et al.Preparation of titania nanotube-Cd0.65Zn0.35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production[J]. Applied surface science, 2014, 322: 265-271. DOI: 10.1016/j.apsusc.2014.10.020.
[19] WU L P, ZHANG Y L, LONG L Z, et al.Effect of ZnS buffer layers in ZnO/ZnS/CdS nanorod array photoelectrode on the photoelectrochemical performance[J]. RSC advances, 2014, 4(40): 20716-20721. DOI: 10.1039/c4ra00005f.
[20] WU L P, ZHANG M Y, LI J, et al.TiO2 nanotube/ZnO nanorod/CdS on Ti mesh with three-dimensional array structure for photocatalytic degradation under visible light irradiation[J]. Research on chemical intermediates, 2016, 42(5): 4569-4580. DOI: 10.1007/s11164-015-2297-6.
[21] 王斌, 高飞, 何斌, 等. CdS/TiO2复合纳米粒子的光学性质[J]. 物理化学学报, 2003, 19(1): 21-24.
[22] BANERJEE S, MOHAPATRA S K, DAS P P, et al.Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS[J]. Chemistry of materials, 2008, 20(21): 6784-6791. DOI: 10.1021/cm802282t.
[23] ARABZADEH A, SALIMI A.One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation[J]. Journal of colloid and interface science, 2016, 479: 43-54. DOI: 10.1016/j.jcis.2016.06.036.
[24] LIU S Q, ZHANG N, TANG Z R, et al.Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell[J]. ACS applied materials & interfaces, 2012, 4(11): 6378-6385. DOI: 10.1021/am302074p.
[25] CHEN Z, XU Y J.Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity[J]. ACS applied materials & interfaces, 2013, 5(24): 13353-13363. DOI: 10.1021/am4043068.
[26] LONG L Z, YU X, WU L P, et al.Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination[J]. Nanotechnology, 2014, 25(3): 35603. DOI: 10.1088/ 0957-4484/25/3/035603.
[27] WU L P, ZHANG Y L, LI X J, et al.CdS nanorod arrays with TiO2 nano-coating for improved photostability and photocatalytic activity[J]. Physical chemistry chemical physics, 2014, 16(29): 15339-15345. DOI: 10.1039/ C4CP01347F.
[28] 周建伟, 褚亮亮, 王储备, 等. 机械化学合成CdS/TiO2复合纳米材料及其光催化性能研究[J]. 人工晶体学报, 2015, 44(9): 2590-2596.
[29] 张清林, 曹尚操, 夏明霞, 等. 利用拉曼和表面光电压谱对一维TiO2@CdS核壳结构界面电荷行为研究[J]. 化学学报, 2013, 71(4): 634-638. DOI: 10.6023/A12100810.
[30] MENG H L, CUI C, SHEN H L, et al.Synthesis and photocatalytic activity of TiO2@CdS and CdS@TiO2 double-shelled hollow spheres[J]. Journal of alloys and compounds, 2012, 527: 30-35. DOI: 10.1016/j.jallcom. 2012.02.043.
[31] 汪婷. 花球状CdIn2S4/CdS的制备及其光电流的研究[J]. 化工技术与开发, 2016, 45(6): 19-22. DOI: 10.3969/j.issn.1671-9905.2016.06.006.
[32] JIANG A Q, LEE H J, KIM G H, et al.The inlaid Al2O3 tunnel switch for ultrathin ferroelectric films[J]. Advanced materials, 2009, 21(28): 2870-2875. DOI: 10.1002/adma.200802924.
[33] NING X F, ZHEN W L, WU Y Q, et al.Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation[J]. Applied catalysis B: environmental, 2018, 226: 373-383. DOI: 10.1016/j.apcatb.2017.12.067.
Outlines

/