Welcome to visit Advances in New and Renewable Energy!
Orginal Article

Preparation of Mo2C/Al2O3 and Its Catalytic Performance on Steam Reforming of Dimethyl Ether

  • ZHANG Liang ,
  • LIAN Jing-hong ,
  • YAN Chang-feng ,
  • GUO Chang-qing
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. Baida New Energy Company, Dongguan 523808, Guangdong, China

Received date: 2018-05-25

  Revised date: 2018-06-06

  Online published: 2018-10-31

Abstract

Bifunctional catalyst Mo2C/Al2O3 was prepared by precipitation method and carbonized by programed heating. Its catalytic effects on steam reforming of dimethyl ether (SRD) for hydrogen production were investigated. Materials of catalyst carriers and molar ratio of Mo2C/Al2O3, along with reactants concentration were studied to show their influence on activity of catalysts. It was found that catalyst with Mo/Al = 1/1 had superior catalytic activities for SRD reaction, the optimum feeding was H2O/DME = 5/1, and a relatively higher catalytic performance achieved at 400oC.

Cite this article

ZHANG Liang , LIAN Jing-hong , YAN Chang-feng , GUO Chang-qing . Preparation of Mo2C/Al2O3 and Its Catalytic Performance on Steam Reforming of Dimethyl Ether[J]. Advances in New and Renewable Energy, 2018 , 6(5) : 365 -370 . DOI: 10.3969/j.issn.2095-560X.2018.05.005

References

[1] NECKEL A.Recent investigations on the electronic structure of the fourth and fifth group transition metal monocarbides, mononitrides, and monoxides[J]. International journal of quantum chemistry, 1983, 23(4): 1317-1353. DOI: 10.1002/qua.560230420.
[2] LEE J S, YEOM M H, LEE D S.Catalysis by molybdenum carbide in activation of C-C, C-O and C-H bonds[J]. Journal of molecular catalysis, 1990, 62(3): L45-L51. DOI: 10.1016/0304-5102(90)85219-8.
[3] MA Y F, GUAN G Q, HAO X G, et al.Molybdenum carbide as alternative catalyst for hydrogen production - a review[J]. Renewable and sustainable energy reviews, 2017, 75: 1101-1129. DOI: 10.1016/j.rser.2016.11.092.
[4] FAUNGNAWAKIJ K, EGUCHI K.Dimethyl ether- reforming catalysts for hydrogen production[J]. Catalysis Surveys from Asia, 2011, 15(1): 12-24. DOI: 10.1007/ s10563-010-9103-7.
[5] YAMADA Y, MATHEW T, UEDA A, et al.A novel DME steam-reforming catalyst designed with fact database on-demand[J]. Applied surface science, 2006, 252(7): 2593-2597. DOI: 10.1016/j.apsusc.2005.05.087.
[6] OKA K, NISHIGUCHI T, KANAI H, et al.Active state of tungsten oxides on WO3/ZrO2 catalyst for steam reforming of dimethyl ether combined with CuO/CeO2[J]. Applied catalysis a: general, 2006, 309(2): 187-191. DOI: 10.1016/j.apcata.2006.05.002.
[7] BRUNGS A J, YORK A P E, CLARIDGE J B, et al. Dry reforming of methane to synthesis gas over supported molybdenum carbide catalysts[J]. Catalysis letters, 2000, 70(3/4): 117-122. DOI: 10.1023/A:1018829116093.
[8] DARUJATI A R S, THOMSON W J. Stability of supported and promoted-molybdenum carbide catalysts in dry-methane reforming[J]. Applied catalysis A: general, 2005, 296(2): 139-147. DOI: 10.1016/j.apcata.2005.07.057.
[9] SHI C, ZHANG A J, LI X S, et al. Ni-modified Mo2C catalysts for methane dry reforming[J]. Applied catalysis a: general, 2012, 431-432: 164-170. DOI: 10.1016/j. apcata.2012.04.035.
[10] BARTHOS R, SOLYMOSI F.Hydrogen production in the decomposition and steam reforming of methanol on Mo2C/carbon catalysts[J]. Journal of catalysis, 2007, 249(2): 289-299. DOI: 10.1016/j.jcat.2007.05.003.
[11] KOÓS A, BARTHOS R, SOLYMOSI F. Reforming of methanol on a K-Promoted Mo2C/Norit catalyst[J]. Journal of physical chemistry C, 2008, 112(7): 2607-2612. DOI: 10.1021/jp710015d.
[12] MA Y F, GUAN G Q, SHI C, et al.Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts[J]. International journal of hydrogen energy, 2014, 39(1): 258-266. DOI: 10.1016/j.ijhydene.2013.09.150.
[13] SCHWEITZER N M, SCHAIDLE J A, EZEKOYE O K, et al.High activity carbide supported catalysts for water gas shift[J]. Journal of the american chemical society, 2011, 133(8): 2378-2381. DOI: 10.1021/ja110705a.
[14] NAGAI M, ZAHIDUL A M, KUNISAKI Y, et al.Water-gas shift reactions on potassium- and zirconium- promoted cobalt molybdenum carbide catalysts[J]. Applied catalysis A: general, 2010, 383(1/2): 58-65. DOI: 10.1016/j.apcata.2010.05.024.
[15] YAO S Y, ZHANG X, ZHOU W, et al.Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349): 389-393. DOI: 10.1126/science.aah4321.
[16] MIAO M, PAN J, HE T, et al.Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction[J]. Chemistry A European journal, 2017, 23(46): 10947-10961. DOI: 10.1002/chem.201701064.
[17] SOLYMOSI F, BARTHOS R, KECSKEMÉTI A. The decomposition and steam reforming of dimethyl ether on supported Mo2C catalysts[J]. Applied catalysis A: general, 2008, 350(1): 30-37. DOI: 10.1016/j.apcata.2008.07.037.
[18] KECSKEMÉTI A, BARTHOS R, SOLYMOSI F. Aromatization of dimethyl and diethyl ethers on Mo2C-promoted ZSM-5 catalysts[J]. Journal of catalysis, 2008, 258(1): 111-120. DOI: 10.1016/j.jcat.2008.06.003.
[19] 李娟, 胡蓉蓉, 闫常峰, 等. 二甲醚水蒸气重整制氢Cu-Zn-Al-Cr/ZSM-5双功能催化剂研究[J]. 太阳能学报, 2014, 35(1): 52-57. DOI: 10.3969/j.issn.0254-0096. 2014.01.010.
Outlines

/