[1] 陈洪章. 纤维素生物技术[M]. 2版. 北京: 化学工业出版社, 2011.
[2] MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical reviews, 2018, 118(2): 505-613. DOI: 10.1021/acs.chemrev.7b00395.
[3] SUN X X, SHEN X L, JAIN R, et al.Synthesis of chemicals by metabolic engineering of microbes[J]. Chemical society reviews, 2015, 44(11): 3760-3785. DOI: 10.1039/C5CS00159E.
[4] TAN T W, SHANG F, ZHANG X.Current development of biorefinery in China[J]. Biotechnology advances, 2010, 28(5): 543-555. DOI: 10.1016/j.biotechadv.2010.05.004.
[5] MA L L, WANG T J, LIU Q Y, et al.A review of thermal-chemical conversion of lignocellulosic biomass in China[J]. Biotechnology advances, 2012, 30(4): 859-873. DOI: 10.1016/j.biotechadv.2012.01.016.
[6] 朱锡锋, VEDERBOSCH R H.生物质热解油气化试验研究[J]. 燃料化学学报, 2004, 32(4): 510-512. DOI: 10.3969/j.issn.0253-2409.2004.04.024.
[7] SUN Z, TOAN S, CHEN S Y, et al.Biomass pyrolysis- gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO2 capture[J]. International journal of hydrogen energy, 2017, 42(25): 16031-16044. DOI: 10.1016/j.ijhydene.2017.05.067.
[8] GUO H J, PENG F, ZHANG H R, et al.Production of hydrogen rich bio-oil derived syngas from co-gasification of bio-oil and waste engine oil as feedstock for lower alcohols synthesis in two-stage bed reactor[J]. International journal of hydrogen energy, 2014, 39(17): 9200-9211. DOI: 10.1016/j.ijhydene.2014.04.008.
[9] STÖCKER M. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials[J]. Angewandte chemie international edition, 2008, 47(48): 9200-9211. DOI: 10.1002/anie.200801476.
[10] SANNA A, VISPUTE T P, HUBER G W.Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts[J]. Applied catalysis B: environmental, 2015, 165: 446-456. DOI: 10.1016/j.apcatb. 2014.10.013.
[11] CZERNIK S, BRIDGWATER A V.Overview of applications of biomass fast pyrolysis oil[J]. Energy & fuels, 2004, 18(2): 590-598. DOI: 10.1021/ef034067u.
[12] YU W J, TANG Y, MO L Y, et al.One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading[J]. Bioresource technology, 2011, 102(17): 8241-8246. DOI: 10.1016/j.biortech.2011.06.015.
[13] XU Y, ZHANG L M, CHANG J H, et al.One step hydrogenation-esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts[J]. Energy conversion and management, 2016, 108: 78-84. DOI: 10.1016/j.enconman.2015.10.062.
[14] PAN H.Synthesis of polymers from organic solvent liquefied biomass: a review[J]. Renewable and sustainable energy reviews, 2011, 15(7): 3454-3463. DOI: 10.1016/j.rser.2011.05.002.
[15] HU S J, LUO X L, LI Y B.Polyols and Polyurethanes from the liquefaction of lignocellulosic biomass[J]. ChemSusChem, 2014, 7(1): 66-72. DOI: 10.1002/cssc. 201300760.
[16] D’SOUZA J, YAN N. Producing bark-based polyols through liquefaction: effect of liquefaction temperature[J]. ACS sustainable chemistry & engineering, 2013, 1(5): 534-540. DOI: 10.1021/sc400013e.
[17] ZHANG H R, YANG H J, GUO H J, et al.Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols[J]. Applied energy, 2014, 113: 1596-1600. DOI: 10.1016/j.apenergy.2013.09.009.
[18] LI H W, FENG S H, YUAN Z S, et al.Highly efficient liquefaction of wheat straw for the production of bio-polyols and bio-based polyurethane foams[J]. Industrial crops and products, 2017, 109: 426-433. DOI: 10.1016/j.indcrop.2017.08.060.
[19] HU S J, WAN C X, LI Y B.Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw[J]. Bioresource technology, 2012, 103(1): 227-233. DOI: 10.1016/j.biortech.2011.09.125.
[20] ZHANG H R, DING F, LUO C R, et al.Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols[J]. Industrial crops and products, 2012, 39: 47-51. DOI: 10.1016/j.indcrop.2012.02.010.
[21] GUO H J, ZHANG H R, CHEN X F, et al.Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst[J]. Energy conversion and management, 2018, 156: 130-139. DOI: 10.1016/j.enconman.2017.11.006.
[22] TAHERZADEH M J, KARIMI K.Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review[J]. BioResources, 2007, 2(3): 472-499.
[23] TAHERZADEH M J, KARIMI K.Enzymatic-based hydrolysis processes for ethanol[J]. BioResources, 2007, 2(4): 707-738.
[24] LYND L R, LASER M S, BRANSBY D, et al.How biotech can transform biofuels[J]. Nature biotechnology, 2008, 26(2): 169-172. DOI: 10.1038/nbt0208-169.
[25] GU H Q, AN R X, BAO J.Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis[J]. Chemical engineering journal, 2018, 352: 198-205. DOI: 10.1016/j.cej.2018.06.145.
[26] LI H L, WU H L, XIONG L, et al.The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse[J]. Carbohydrate polymers, 2017, 175: 199-206. DOI: 10.1016/j.carbpol.2017.07.075.
[27] AHMED M A, SEO Y H, TER TERÁN-HILARES R, et al. Persulfate based pretreatment to enhance the enzymatic digestibility of rice straw[J]. Bioresource technology, 2016, 222: 523-526. DOI: 10.1016/j.biortech.2016.09.122.
[28] QI G X, XIONG L, WANG B, et al.Improvement and characterization in enzymatic hydrolysis of regenerated wheat straw dissolved by LiCl/DMAc solvent system[J]. Applied biochemistry and biotechnology, 2017, 181(1): 177-191. DOI: 10.1007/s12010-016-2206-5.
[29] FARONE W, CUZENS J E.Strong acid hydrolysis of cellulosic and hemicellulosic materials[J]. Biotechnology advances, 1997, 15(3): 798. DOI: 10.1016/S0734-9750 (97)88789-7.
[30] KIM J S, LEE Y Y, TORGET R W.Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions[M]//DAVISON B H, MCMILLAN J, FINKELSTEIN M. Twenty-Second Symposium on Biotechnology for Fuels and Chemicals. Totowa, NJ: Humana Press.
[31] PALMQVIST E, HAHN-HÄGERDAL B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition[J]. Bioresource technology, 2000, 74(1): 25-33. DOI: 10.1016/S0960-8524(99)00161-3.
[32] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al.The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489. DOI: 10.1126/science. 1114736.
[33] NEGAHDAR L, DELIDOVICH I, PALKOVITS R.Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism[J]. Applied catalysis B: environmental, 2016, 184: 285-298. DOI: 10.1016/j.apcatb.2015.11.039.
[34] PAULOVA L, PATAKOVA P, BRANSKA B, et al.Lignocellulosic ethanol: Technology design and its impact on process efficiency[J]. Biotechnology advances, 2015, 33(6): 1091-1107. DOI: 10.1016/j.biotechadv.2014.12.002.
[35] ADITIYA H B, MAHLIA T M I, CHONG W T, et al. Second generation bioethanol production: A critical review[J]. Renewable and sustainable energy reviews, 2016, 66: 631-653. DOI: 10.1016/j.rser.2016.07.015.
[36] BERNIER-OVIEDO D J, RINCÓN-MORENO J A, SOLANILLA-DUQUÉ J F, et al. Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse[J]. Industrial crops and products, 2018, 122: 414-421. DOI: 10.1016/j.indcrop.2018.06.012.
[37] NGUYEN T Y, CAI C M, KUMAR R, et al.Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(44): 11673-11678. DOI: 10.1073/pnas.1704652114.
[38] WEI S, LIU Y N, WU M L, et al.Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae[J]. Biotechnology for biofuels, 2018, 11(1): 112. DOI: 10.1186/s13068-018-1112-1.
[39] WU X D, ZHANG J S, XU E N, et al.Microbial hydrolysis and fermentation of rice straw for ethanol production[J]. Fuel, 2016, 180: 679-686. DOI: 10.1016/j.fuel.2016.04.087.
[40] LEE S Y, PARK J H, JANG S H, et al.Fermentative butanol production by clostridia[J]. Biotechnology and bioengineering, 2008, 101(2): 209-228. DOI: 10.1002/ bit.22003.
[41] GREEN E M.Fermentative production of butanol-the industrial perspective[J]. Current opinion in biotechnology, 2011, 22(3): 337-343. DOI: 10.1016/j.copbio.2011.02.004.
[42] NI Y, SUN Z H.Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China[J]. Applied microbiology and biotechnology, 2009, 83(3): 415-423. DOI: 10.1007/s00253-009-2003-y.
[43] LI T G, ZHANG C, YANG K L, et al.Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol[J]. Science advances, 2018, 4(3): e1701475. DOI: 10.1126/sciadv.1701475.
[44] LI H L, XIONG L, CHEN X F, et al.Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment[J]. Bioresource technology, 2017, 228: 257-263. DOI: 10.1016/j.biortech.2016.12.119.
[45] PATRAŞCU I, BÎLDEA C S, KISS A A. Eco-efficient butanol separation in the ABE fermentation process[J]. Separation and purification technology, 2017, 177: 49-61. DOI: 10.1016/j.seppur.2016.12.008.
[46] LIN X Q, XIONG L, QI G X, et al.Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent[J]. ACS sustainable chemistry & engineering, 2015, 3(4): 702-709. DOI: 10.1021/acssuschemeng.5b00010.
[47] QI G X, XIONG L, LIN X Q, et al.CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum[J]. Biotechnology letters, 2017, 39(1): 97-104. DOI: 10.1007/s10529-016-2231-z.
[48] ANGELIDAKI I, TREU L, TSAPEKOS P, et al.Biogas upgrading and utilization: Current status and perspectives[J]. Biotechnology advances, 2018, 36(2): 452-466. DOI: 10.1016/j.biotechadv.2018.01.011.
[49] ZHENG Y, ZHAO J, XU F Q, et al.Pretreatment of lignocellulosic biomass for enhanced biogas production[J]. Progress in energy and combustion science, 2014, 42: 35-53. DOI: 10.1016/j.pecs.2014.01.001.
[50] STONE K A, HILLIARD M V, HE Q P, et al.A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion[J]. Biochemical engineering journal, 2017, 128: 83-92. DOI: 10.1016/j.bej.2017.09.003.
[51] AKOBI C, YEO H, HAFEZ H, et al.Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass[J]. Applied energy, 2016, 184: 548-559. DOI: 10.1016/j.apenergy.2016.10.039.
[52] HUANG C, GUO H J, WANG C, et al.Efficient continuous biogas production using lignocellulosic hydrolysates as substrate: A semi-pilot scale long-term study[J]. Energy conversion and management, 2017, 151: 53-62. DOI: 10.1016/j.enconman.2017.08.074.
[53] ZHAO Z S, LI Y, QUAN X, et al.Improving the co-digestion performance of waste activated sludge and wheat straw through ratio optimization and ferroferric oxide supplementation[J]. Bioresource technology, 2018, 267: 591-598. DOI: 10.1016/j.biortech.2018.07.052.
[54] HUANG C, CHEN X F, XIONG L, et al.Single cell oil production from low-cost substrates: The possibility and potential of its industrialization[J]. Biotechnology advances, 2013, 31(2): 129-139. DOI: 10.1016/j.biotechadv.2012.08.010.
[55] FARIED M, SAMER M, ABDELSALAM E, et al.Biodiesel production from microalgae: Processes, technologies and recent advancements[J]. Renewable and sustainable energy reviews, 2017, 79: 893-913. DOI: 10.1016/j.rser.2017.05.199.
[56] PATEL A, ARORA N, SARTAJ K, et al.Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses[J]. Renewable and sustainable energy reviews, 2016, 62: 836-855. DOI: 10.1016/j.rser.2016.05.014.
[57] ZHU Z W, ZHOU Y J, KRIVORUCHKO A, et al.Expanding the product portfolio of fungal type I fatty acid synthases[J]. Nature chemical biology, 2017, 13(4): 360-362. DOI: 10.1038/nchembio.2301.
[58] D AZ T, FILLET S, CAMPOY S, et al. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates[J]. Applied microbiology and biotechnology, 2018, 102(7): 3287-3300. DOI: 10.1007/s00253-018-8810-2.
[59] CHEN X F, HUANG C, YANG X Y, et al.Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate[J]. Bioresource technology, 2013, 143: 18-24. DOI: 10.1016/j.biortech.2013.05.102.
[60] SUNDSTROM E, YAEGASHI J, YAN J P, et al.Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels[J]. Green chemistry, 2018, 20(12): 2870-2879. DOI: 10.1039/C8GC00518D.
[61] HUANG C, LUO M T, CHEN X F, et al.Combined “de novo” and “ex novo” lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis[J]. Biotechnology for biofuels, 2017, 10(1): 147. DOI: 10.1186/s13068-017-0835-8.
[62] CHEN P, CHO S Y, JIN H J.Modification and applications of bacterial celluloses in polymer science[J]. Macromolecular research, 2010, 18(4): 309-320. DOI: 10.1007/s13233-010-0404-5.
[63] 孙东平, 杨加志. 细菌纤维素功能材料及其工业应用[M]. 北京: 科学出版社, 2010.
[64] HONG F, GUO X, ZHANG S, et al.Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment[J]. Bioresource technology, 2012, 104: 503-508. DOI: 10.1016/j.biortech.2011.11.028.
[65] HONG F, ZHU Y X, YANG G, et al.Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose[J]. Journal of chemical technology & biotechnology, 2011, 86(5): 675-680. DOI: 10.1002/jctb.2567.
[66] HUANG C, YANG X Y, XIONG L, et al.Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Applied biochemistry and biotechnology, 2015, 175(3): 1678-1688. DOI: 10.1007/s12010-014-1407-z.
[67] QI G X, LUO M T, HUANG C, et al.Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates[J]. Journal of applied polymer science, 2017, 134(28): 45066. DOI: 10.1002/app.45066.
[68] ZEIKUS J G, JAIN M K, ELANKOVAN P.Biotechnology of succinic acid production and markets for derived industrial products[J]. Applied microbiology and biotechnology, 1999, 51(5): 545-552. DOI: 10.1007/s002530051431.
[69] SAXENA R K, ANAND P, SARAN S, et al.Microbial production of 1, 3-propanediol: Recent developments and emerging opportunities[J]. Biotechnology advances, 2009, 27(6): 895-913. DOI: 10.1016/j.biotechadv.2009.07.003.
[70] SHAHAB R L, LUTERBACHER J S, BRETHAUER S, et al.Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium[J]. Biotechnology and bioengineering, 2018, 115(5): 1207-1215. DOI: 10.1002/bit.26541.
[71] NICHOLS N N, DIEN B S, GUISADO G M, et al.Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates[J]. Applied biochemistry and biotechnology, 2005, 121(1/3): 379-390. DOI: 10.1385/ABAB:121:1-3:0379.
[72] JÖNSSON L J, PALMQVIST E, NILVEBRANT N O, et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor[J]. Applied microbiology and biotechnology, 1998, 49(6): 691-697. DOI: 10.1007/s002530051233.
[73] MOHAGHEGHI A, RUTH M, SCHELL D J.Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields[J]. Process biochemistry, 2006, 41(8): 1806-1811. DOI: 10.1016/j.procbio.2006.03.028.
[74] MUSSATTO S I, ROBERTO I C.Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review[J]. Bioresource technology, 2004, 93(1): 1-10. DOI: 10.1016/j.biortech. 2003.10.005.
[75] NILVEBRANT N O, REIMANN A, LARSSON S, et al.Detoxification of lignocellulose hydrolysates with ion- exchange resins[J]. Applied biochemistry and biotechnology, 2001, 91(1/9): 35-49. DOI: 10.1385/ABAB:91-93:1-9:35.
[76] LIU Q Q, WANG L, XIAO A G.Research progress in macroporous styrene-divinylbenzene co-polymer microspheres[J]. Designed monomers and polymers, 2007, 10(5): 405-423.
[77] SAINIO T, TURKU I, HEINONEN J.Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass[J]. Bioresource technology, 2011, 102(10): 6048-6057. DOI: 10.1016/j.biortech.2011.02.107.
[78] LIN X Q, HUANG Q L, QI G X, et al.Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies[J]. Chemosphere, 2017, 171: 231-239. DOI: 10.1016/j.chemosphere.2016.12.084.
[79] HUANG Q L, ZHANG H R, XIONG L, et al.Controllable synthesis of styrene-divinylbenzene adsorption resins and the effect of textural properties on removal performance of fermentation inhibitors from rice straw hydrolysate[J]. Industrial & engineering chemistry research, 2018, 57(14): 5119-5127. DOI: 10.1021/acs.iecr.8b00545.
[80] LING X, LI H B, ZHA H W, et al.Polar-modified post-cross-linked polystyrene and its adsorption towards salicylic acid from aqueous solution[J]. Chemical engineering journal, 2016, 286: 400-407. DOI: 10.1016/j.cej.2015.11.014.
[81] HUANG Q L, ZHANG H R, XIONG L, et al.Controllable synthesis of monoacrylate-modified adsorption resins and enhancing adsorption toward fermentation inhibitors from rice straw hydrolysate[J]. Journal of chemical technology & biotechnology, 2018, 93(9): 2652-2658. DOI: 10.1002/jctb.5619.
[82] HUANG Q L, LIN X Q, XIONG L, et al.Equilibrium, kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self-synthesized macro/mesoporous resin[J]. RSC advances, 2017, 7(39): 23896-23906. DOI: 10.1039/C7RA01058C.
[83] YAN K, WU G S, LAFLEUR T, et al.Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable and sustainable energy reviews, 2014, 38: 663-676. DOI: 10.1016/j.rser.2014.07.003.
[84] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al.Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & environmental science, 2016, 9(4): 1144-1189. DOI: 10.1039/C5EE02666K.
[85] LI X D, JIA P, WANG T F.Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS catalysis, 2016, 6(11): 7621-7640. DOI: 10.1021/acscatal.6b01838.
[86] YAN K, JARVIS C, GU J, et al.Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels[J]. Renewable and sustainable energy reviews, 2015, 51: 986-997. DOI: 10.1016/j.rser.2015.07.021.
[87] GUO H J, ZHANG H R, ZHANG L Q, et al.Selective hydrogenation of furfural to furfuryl alcohol over acid-activated attapulgite-supported NiCoB amorphous alloy catalyst[J]. Industrial & engineering chemistry research, 2018, 57(2): 498-511. DOI: 10.1021/acs.iecr.7b03699.
[88] CHEN B, GUO H J, WAN Z, et al.Efficient catalytic hydrogenation of butyl levulinate to γ-valerolactone over a stable and magnetic CuNiCoB amorphous alloy catalyst[J]. Energy & fuels, 2018, 32(4): 5527-5535. DOI: 10.1021/acs.energyfuels.8b00378.
[89] SUN J M, WANG Y.Recent advances in catalytic conversion of ethanol to chemicals[J]. ACS catalysis, 2014, 4(4): 1078-1090. DOI: 10.1021/cs4011343.
[90] YANG D, XIONG L, WANG B, et al.Preparation and characterization of epoxidized microbial oil[J]. Korean journal of chemical engineering, 2016, 33(3): 964-971. DOI: 10.1007/s11814-015-0216-6.
[91] JI D, FANG Z, HE W, et al.Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol[J]. Industrial crops and products, 2015, 74: 76-82. DOI: 10.1016/j.indcrop.2015.04.041.
[92] 汪多仁. 绿色油脂深加工产品[M]. 北京: 科学技术文献出版社, 2007.
[93] WU Z Y, LI C, LIANG H W, et al.Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte chemie international edition, 2013, 52(10): 2925-2929. DOI: 10.1002/anie.201209676.
[94] LUO M T, LI H L, HUANG C, et al.Cellulose-based absorbent production from bacterial cellulose and acrylic acid: synthesis and performance[J]. Polymers, 2018, 10(7): 702. DOI: 10.3390/polym10070702.
[95] SULAEVA I, HENNIGES U, ROSENAU T, et al.Bacterial cellulose as a material for wound treatment: Properties and modifications. A review[J]. Biotechnology advances, 2015, 33(8): 1547-1571. DOI: 10.1016/j. biotechadv.2015.07.009.
[96] WANG B, ZHANG H R, HUANG C, et al.Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites[J]. RSC advances, 2017, 7(67): 42113-42122. DOI: 10.1039/ C7RA07731A.
[97] SHI Z J, ZHANG Y, PHILLIPS G O, et al.Utilization of bacterial cellulose in food[J]. Food hydrocolloids, 2014, 35: 539-545. DOI: 10.1016/j.foodhyd.2013.07.012.
[98] ZHANG H R, GUO H J, WANG B, et al.Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution[J]. Carbohydrate polymers, 2016, 136: 171-176. DOI: 10.1016/j.carbpol.2015.09.029.
[99] XIU Z L, ZENG A P.Present state and perspective of downstream processing of biologically produced 1, 3-propanediol and 2, 3-butanediol[J]. Applied microbiology and biotechnology, 2008, 78(6): 917-926. DOI: 10.1007/s00253-008-1387-4.
[100] DELHOMME C, WEUSTER-BOTZ D, KÜHN F E. Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media[J]. Green chemistry, 2009, 11(1): 13-26. DOI: 10.1039/B810684C.
[101] DUSSELIER M, VAN WOUWE P, DEWAELE A, et al.Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis[J]. Energy & environmental science, 2013, 6(5): 1415-1442. DOI: 10.1039/C3EE00069A.