Welcome to visit Advances in New and Renewable Energy!
Orginal Article

Advances on High-Value Comprehensive Utilization of Straw

  • CHEN Xue-fang ,
  • GUO Hai-jun ,
  • XIONG Lian ,
  • ZHANG Hai-rong ,
  • HUANG Chao ,
  • CHEN Xin-de
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China, 3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Received date: 2018-10-03

  Revised date: 2018-10-15

  Online published: 2018-10-31

Abstract

The high-value comprehensive utilization of straw is an important research direction of biomass chemical engineering, which is expected to be an important supplement to traditional petrochemical industry. By chemical and biological technologies, straw can be converted into various products, providing a green and renewable preparation route for energy, materials, chemical industry. Integrating chemical and biological technologies is important for realizing the high-value comprehensive utilization of straw and its industrialization. In this paper, the typical methods of chemical and biological conversion of straw were introduced, and the scientific idea, research status and development trend of the application of chemical and biotechnology integration in high-value conversion of straw were expounded. It is expected to provide some references for the technology development of high-value comprehensive utilization of straw.

Cite this article

CHEN Xue-fang , GUO Hai-jun , XIONG Lian , ZHANG Hai-rong , HUANG Chao , CHEN Xin-de . Advances on High-Value Comprehensive Utilization of Straw[J]. Advances in New and Renewable Energy, 2018 , 6(5) : 422 -431 . DOI: 10.3969/j.issn.2095-560X.2018.05.012

References

[1] 陈洪章. 纤维素生物技术[M]. 2版. 北京: 化学工业出版社, 2011.
[2] MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chemical reviews, 2018, 118(2): 505-613. DOI: 10.1021/acs.chemrev.7b00395.
[3] SUN X X, SHEN X L, JAIN R, et al.Synthesis of chemicals by metabolic engineering of microbes[J]. Chemical society reviews, 2015, 44(11): 3760-3785. DOI: 10.1039/C5CS00159E.
[4] TAN T W, SHANG F, ZHANG X.Current development of biorefinery in China[J]. Biotechnology advances, 2010, 28(5): 543-555. DOI: 10.1016/j.biotechadv.2010.05.004.
[5] MA L L, WANG T J, LIU Q Y, et al.A review of thermal-chemical conversion of lignocellulosic biomass in China[J]. Biotechnology advances, 2012, 30(4): 859-873. DOI: 10.1016/j.biotechadv.2012.01.016.
[6] 朱锡锋, VEDERBOSCH R H.生物质热解油气化试验研究[J]. 燃料化学学报, 2004, 32(4): 510-512. DOI: 10.3969/j.issn.0253-2409.2004.04.024.
[7] SUN Z, TOAN S, CHEN S Y, et al.Biomass pyrolysis- gasification over Zr promoted CaO-HZSM-5 catalysts for hydrogen and bio-oil co-production with CO2 capture[J]. International journal of hydrogen energy, 2017, 42(25): 16031-16044. DOI: 10.1016/j.ijhydene.2017.05.067.
[8] GUO H J, PENG F, ZHANG H R, et al.Production of hydrogen rich bio-oil derived syngas from co-gasification of bio-oil and waste engine oil as feedstock for lower alcohols synthesis in two-stage bed reactor[J]. International journal of hydrogen energy, 2014, 39(17): 9200-9211. DOI: 10.1016/j.ijhydene.2014.04.008.
[9] STÖCKER M. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials[J]. Angewandte chemie international edition, 2008, 47(48): 9200-9211. DOI: 10.1002/anie.200801476.
[10] SANNA A, VISPUTE T P, HUBER G W.Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts[J]. Applied catalysis B: environmental, 2015, 165: 446-456. DOI: 10.1016/j.apcatb. 2014.10.013.
[11] CZERNIK S, BRIDGWATER A V.Overview of applications of biomass fast pyrolysis oil[J]. Energy & fuels, 2004, 18(2): 590-598. DOI: 10.1021/ef034067u.
[12] YU W J, TANG Y, MO L Y, et al.One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading[J]. Bioresource technology, 2011, 102(17): 8241-8246. DOI: 10.1016/j.biortech.2011.06.015.
[13] XU Y, ZHANG L M, CHANG J H, et al.One step hydrogenation-esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts[J]. Energy conversion and management, 2016, 108: 78-84. DOI: 10.1016/j.enconman.2015.10.062.
[14] PAN H.Synthesis of polymers from organic solvent liquefied biomass: a review[J]. Renewable and sustainable energy reviews, 2011, 15(7): 3454-3463. DOI: 10.1016/j.rser.2011.05.002.
[15] HU S J, LUO X L, LI Y B.Polyols and Polyurethanes from the liquefaction of lignocellulosic biomass[J]. ChemSusChem, 2014, 7(1): 66-72. DOI: 10.1002/cssc. 201300760.
[16] D’SOUZA J, YAN N. Producing bark-based polyols through liquefaction: effect of liquefaction temperature[J]. ACS sustainable chemistry & engineering, 2013, 1(5): 534-540. DOI: 10.1021/sc400013e.
[17] ZHANG H R, YANG H J, GUO H J, et al.Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols[J]. Applied energy, 2014, 113: 1596-1600. DOI: 10.1016/j.apenergy.2013.09.009.
[18] LI H W, FENG S H, YUAN Z S, et al.Highly efficient liquefaction of wheat straw for the production of bio-polyols and bio-based polyurethane foams[J]. Industrial crops and products, 2017, 109: 426-433. DOI: 10.1016/j.indcrop.2017.08.060.
[19] HU S J, WAN C X, LI Y B.Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw[J]. Bioresource technology, 2012, 103(1): 227-233. DOI: 10.1016/j.biortech.2011.09.125.
[20] ZHANG H R, DING F, LUO C R, et al.Liquefaction and characterization of acid hydrolysis residue of corncob in polyhydric alcohols[J]. Industrial crops and products, 2012, 39: 47-51. DOI: 10.1016/j.indcrop.2012.02.010.
[21] GUO H J, ZHANG H R, CHEN X F, et al.Catalytic upgrading of biopolyols derived from liquefaction of wheat straw over a high-performance and stable supported amorphous alloy catalyst[J]. Energy conversion and management, 2018, 156: 130-139. DOI: 10.1016/j.enconman.2017.11.006.
[22] TAHERZADEH M J, KARIMI K.Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review[J]. BioResources, 2007, 2(3): 472-499.
[23] TAHERZADEH M J, KARIMI K.Enzymatic-based hydrolysis processes for ethanol[J]. BioResources, 2007, 2(4): 707-738.
[24] LYND L R, LASER M S, BRANSBY D, et al.How biotech can transform biofuels[J]. Nature biotechnology, 2008, 26(2): 169-172. DOI: 10.1038/nbt0208-169.
[25] GU H Q, AN R X, BAO J.Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis[J]. Chemical engineering journal, 2018, 352: 198-205. DOI: 10.1016/j.cej.2018.06.145.
[26] LI H L, WU H L, XIONG L, et al.The hydrolytic efficiency and synergistic action of recombinant xylan-degrading enzymes on xylan isolated from sugarcane bagasse[J]. Carbohydrate polymers, 2017, 175: 199-206. DOI: 10.1016/j.carbpol.2017.07.075.
[27] AHMED M A, SEO Y H, TER TERÁN-HILARES R, et al. Persulfate based pretreatment to enhance the enzymatic digestibility of rice straw[J]. Bioresource technology, 2016, 222: 523-526. DOI: 10.1016/j.biortech.2016.09.122.
[28] QI G X, XIONG L, WANG B, et al.Improvement and characterization in enzymatic hydrolysis of regenerated wheat straw dissolved by LiCl/DMAc solvent system[J]. Applied biochemistry and biotechnology, 2017, 181(1): 177-191. DOI: 10.1007/s12010-016-2206-5.
[29] FARONE W, CUZENS J E.Strong acid hydrolysis of cellulosic and hemicellulosic materials[J]. Biotechnology advances, 1997, 15(3): 798. DOI: 10.1016/S0734-9750 (97)88789-7.
[30] KIM J S, LEE Y Y, TORGET R W.Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions[M]//DAVISON B H, MCMILLAN J, FINKELSTEIN M. Twenty-Second Symposium on Biotechnology for Fuels and Chemicals. Totowa, NJ: Humana Press.
[31] PALMQVIST E, HAHN-HÄGERDAL B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition[J]. Bioresource technology, 2000, 74(1): 25-33. DOI: 10.1016/S0960-8524(99)00161-3.
[32] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al.The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489. DOI: 10.1126/science. 1114736.
[33] NEGAHDAR L, DELIDOVICH I, PALKOVITS R.Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism[J]. Applied catalysis B: environmental, 2016, 184: 285-298. DOI: 10.1016/j.apcatb.2015.11.039.
[34] PAULOVA L, PATAKOVA P, BRANSKA B, et al.Lignocellulosic ethanol: Technology design and its impact on process efficiency[J]. Biotechnology advances, 2015, 33(6): 1091-1107. DOI: 10.1016/j.biotechadv.2014.12.002.
[35] ADITIYA H B, MAHLIA T M I, CHONG W T, et al. Second generation bioethanol production: A critical review[J]. Renewable and sustainable energy reviews, 2016, 66: 631-653. DOI: 10.1016/j.rser.2016.07.015.
[36] BERNIER-OVIEDO D J, RINCÓN-MORENO J A, SOLANILLA-DUQUÉ J F, et al. Comparison of two pretreatments methods to produce second-generation bioethanol resulting from sugarcane bagasse[J]. Industrial crops and products, 2018, 122: 414-421. DOI: 10.1016/j.indcrop.2018.06.012.
[37] NGUYEN T Y, CAI C M, KUMAR R, et al.Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(44): 11673-11678. DOI: 10.1073/pnas.1704652114.
[38] WEI S, LIU Y N, WU M L, et al.Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae[J]. Biotechnology for biofuels, 2018, 11(1): 112. DOI: 10.1186/s13068-018-1112-1.
[39] WU X D, ZHANG J S, XU E N, et al.Microbial hydrolysis and fermentation of rice straw for ethanol production[J]. Fuel, 2016, 180: 679-686. DOI: 10.1016/j.fuel.2016.04.087.
[40] LEE S Y, PARK J H, JANG S H, et al.Fermentative butanol production by clostridia[J]. Biotechnology and bioengineering, 2008, 101(2): 209-228. DOI: 10.1002/ bit.22003.
[41] GREEN E M.Fermentative production of butanol-the industrial perspective[J]. Current opinion in biotechnology, 2011, 22(3): 337-343. DOI: 10.1016/j.copbio.2011.02.004.
[42] NI Y, SUN Z H.Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China[J]. Applied microbiology and biotechnology, 2009, 83(3): 415-423. DOI: 10.1007/s00253-009-2003-y.
[43] LI T G, ZHANG C, YANG K L, et al.Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol[J]. Science advances, 2018, 4(3): e1701475. DOI: 10.1126/sciadv.1701475.
[44] LI H L, XIONG L, CHEN X F, et al.Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment[J]. Bioresource technology, 2017, 228: 257-263. DOI: 10.1016/j.biortech.2016.12.119.
[45] PATRAŞCU I, BÎLDEA C S, KISS A A. Eco-efficient butanol separation in the ABE fermentation process[J]. Separation and purification technology, 2017, 177: 49-61. DOI: 10.1016/j.seppur.2016.12.008.
[46] LIN X Q, XIONG L, QI G X, et al.Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent[J]. ACS sustainable chemistry & engineering, 2015, 3(4): 702-709. DOI: 10.1021/acssuschemeng.5b00010.
[47] QI G X, XIONG L, LIN X Q, et al.CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum[J]. Biotechnology letters, 2017, 39(1): 97-104. DOI: 10.1007/s10529-016-2231-z.
[48] ANGELIDAKI I, TREU L, TSAPEKOS P, et al.Biogas upgrading and utilization: Current status and perspectives[J]. Biotechnology advances, 2018, 36(2): 452-466. DOI: 10.1016/j.biotechadv.2018.01.011.
[49] ZHENG Y, ZHAO J, XU F Q, et al.Pretreatment of lignocellulosic biomass for enhanced biogas production[J]. Progress in energy and combustion science, 2014, 42: 35-53. DOI: 10.1016/j.pecs.2014.01.001.
[50] STONE K A, HILLIARD M V, HE Q P, et al.A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion[J]. Biochemical engineering journal, 2017, 128: 83-92. DOI: 10.1016/j.bej.2017.09.003.
[51] AKOBI C, YEO H, HAFEZ H, et al.Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass[J]. Applied energy, 2016, 184: 548-559. DOI: 10.1016/j.apenergy.2016.10.039.
[52] HUANG C, GUO H J, WANG C, et al.Efficient continuous biogas production using lignocellulosic hydrolysates as substrate: A semi-pilot scale long-term study[J]. Energy conversion and management, 2017, 151: 53-62. DOI: 10.1016/j.enconman.2017.08.074.
[53] ZHAO Z S, LI Y, QUAN X, et al.Improving the co-digestion performance of waste activated sludge and wheat straw through ratio optimization and ferroferric oxide supplementation[J]. Bioresource technology, 2018, 267: 591-598. DOI: 10.1016/j.biortech.2018.07.052.
[54] HUANG C, CHEN X F, XIONG L, et al.Single cell oil production from low-cost substrates: The possibility and potential of its industrialization[J]. Biotechnology advances, 2013, 31(2): 129-139. DOI: 10.1016/j.biotechadv.2012.08.010.
[55] FARIED M, SAMER M, ABDELSALAM E, et al.Biodiesel production from microalgae: Processes, technologies and recent advancements[J]. Renewable and sustainable energy reviews, 2017, 79: 893-913. DOI: 10.1016/j.rser.2017.05.199.
[56] PATEL A, ARORA N, SARTAJ K, et al.Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses[J]. Renewable and sustainable energy reviews, 2016, 62: 836-855. DOI: 10.1016/j.rser.2016.05.014.
[57] ZHU Z W, ZHOU Y J, KRIVORUCHKO A, et al.Expanding the product portfolio of fungal type I fatty acid synthases[J]. Nature chemical biology, 2017, 13(4): 360-362. DOI: 10.1038/nchembio.2301.
[58] D AZ T, FILLET S, CAMPOY S, et al. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates[J]. Applied microbiology and biotechnology, 2018, 102(7): 3287-3300. DOI: 10.1007/s00253-018-8810-2.
[59] CHEN X F, HUANG C, YANG X Y, et al.Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate[J]. Bioresource technology, 2013, 143: 18-24. DOI: 10.1016/j.biortech.2013.05.102.
[60] SUNDSTROM E, YAEGASHI J, YAN J P, et al.Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels[J]. Green chemistry, 2018, 20(12): 2870-2879. DOI: 10.1039/C8GC00518D.
[61] HUANG C, LUO M T, CHEN X F, et al.Combined “de novo” and “ex novo” lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis[J]. Biotechnology for biofuels, 2017, 10(1): 147. DOI: 10.1186/s13068-017-0835-8.
[62] CHEN P, CHO S Y, JIN H J.Modification and applications of bacterial celluloses in polymer science[J]. Macromolecular research, 2010, 18(4): 309-320. DOI: 10.1007/s13233-010-0404-5.
[63] 孙东平, 杨加志. 细菌纤维素功能材料及其工业应用[M]. 北京: 科学出版社, 2010.
[64] HONG F, GUO X, ZHANG S, et al.Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment[J]. Bioresource technology, 2012, 104: 503-508. DOI: 10.1016/j.biortech.2011.11.028.
[65] HONG F, ZHU Y X, YANG G, et al.Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose[J]. Journal of chemical technology & biotechnology, 2011, 86(5): 675-680. DOI: 10.1002/jctb.2567.
[66] HUANG C, YANG X Y, XIONG L, et al.Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Applied biochemistry and biotechnology, 2015, 175(3): 1678-1688. DOI: 10.1007/s12010-014-1407-z.
[67] QI G X, LUO M T, HUANG C, et al.Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates[J]. Journal of applied polymer science, 2017, 134(28): 45066. DOI: 10.1002/app.45066.
[68] ZEIKUS J G, JAIN M K, ELANKOVAN P.Biotechnology of succinic acid production and markets for derived industrial products[J]. Applied microbiology and biotechnology, 1999, 51(5): 545-552. DOI: 10.1007/s002530051431.
[69] SAXENA R K, ANAND P, SARAN S, et al.Microbial production of 1, 3-propanediol: Recent developments and emerging opportunities[J]. Biotechnology advances, 2009, 27(6): 895-913. DOI: 10.1016/j.biotechadv.2009.07.003.
[70] SHAHAB R L, LUTERBACHER J S, BRETHAUER S, et al.Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium[J]. Biotechnology and bioengineering, 2018, 115(5): 1207-1215. DOI: 10.1002/bit.26541.
[71] NICHOLS N N, DIEN B S, GUISADO G M, et al.Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates[J]. Applied biochemistry and biotechnology, 2005, 121(1/3): 379-390. DOI: 10.1385/ABAB:121:1-3:0379.
[72] JÖNSSON L J, PALMQVIST E, NILVEBRANT N O, et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor[J]. Applied microbiology and biotechnology, 1998, 49(6): 691-697. DOI: 10.1007/s002530051233.
[73] MOHAGHEGHI A, RUTH M, SCHELL D J.Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields[J]. Process biochemistry, 2006, 41(8): 1806-1811. DOI: 10.1016/j.procbio.2006.03.028.
[74] MUSSATTO S I, ROBERTO I C.Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review[J]. Bioresource technology, 2004, 93(1): 1-10. DOI: 10.1016/j.biortech. 2003.10.005.
[75] NILVEBRANT N O, REIMANN A, LARSSON S, et al.Detoxification of lignocellulose hydrolysates with ion- exchange resins[J]. Applied biochemistry and biotechnology, 2001, 91(1/9): 35-49. DOI: 10.1385/ABAB:91-93:1-9:35.
[76] LIU Q Q, WANG L, XIAO A G.Research progress in macroporous styrene-divinylbenzene co-polymer microspheres[J]. Designed monomers and polymers, 2007, 10(5): 405-423.
[77] SAINIO T, TURKU I, HEINONEN J.Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass[J]. Bioresource technology, 2011, 102(10): 6048-6057. DOI: 10.1016/j.biortech.2011.02.107.
[78] LIN X Q, HUANG Q L, QI G X, et al.Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies[J]. Chemosphere, 2017, 171: 231-239. DOI: 10.1016/j.chemosphere.2016.12.084.
[79] HUANG Q L, ZHANG H R, XIONG L, et al.Controllable synthesis of styrene-divinylbenzene adsorption resins and the effect of textural properties on removal performance of fermentation inhibitors from rice straw hydrolysate[J]. Industrial & engineering chemistry research, 2018, 57(14): 5119-5127. DOI: 10.1021/acs.iecr.8b00545.
[80] LING X, LI H B, ZHA H W, et al.Polar-modified post-cross-linked polystyrene and its adsorption towards salicylic acid from aqueous solution[J]. Chemical engineering journal, 2016, 286: 400-407. DOI: 10.1016/j.cej.2015.11.014.
[81] HUANG Q L, ZHANG H R, XIONG L, et al.Controllable synthesis of monoacrylate-modified adsorption resins and enhancing adsorption toward fermentation inhibitors from rice straw hydrolysate[J]. Journal of chemical technology & biotechnology, 2018, 93(9): 2652-2658. DOI: 10.1002/jctb.5619.
[82] HUANG Q L, LIN X Q, XIONG L, et al.Equilibrium, kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self-synthesized macro/mesoporous resin[J]. RSC advances, 2017, 7(39): 23896-23906. DOI: 10.1039/C7RA01058C.
[83] YAN K, WU G S, LAFLEUR T, et al.Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable and sustainable energy reviews, 2014, 38: 663-676. DOI: 10.1016/j.rser.2014.07.003.
[84] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al.Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & environmental science, 2016, 9(4): 1144-1189. DOI: 10.1039/C5EE02666K.
[85] LI X D, JIA P, WANG T F.Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS catalysis, 2016, 6(11): 7621-7640. DOI: 10.1021/acscatal.6b01838.
[86] YAN K, JARVIS C, GU J, et al.Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels[J]. Renewable and sustainable energy reviews, 2015, 51: 986-997. DOI: 10.1016/j.rser.2015.07.021.
[87] GUO H J, ZHANG H R, ZHANG L Q, et al.Selective hydrogenation of furfural to furfuryl alcohol over acid-activated attapulgite-supported NiCoB amorphous alloy catalyst[J]. Industrial & engineering chemistry research, 2018, 57(2): 498-511. DOI: 10.1021/acs.iecr.7b03699.
[88] CHEN B, GUO H J, WAN Z, et al.Efficient catalytic hydrogenation of butyl levulinate to γ-valerolactone over a stable and magnetic CuNiCoB amorphous alloy catalyst[J]. Energy & fuels, 2018, 32(4): 5527-5535. DOI: 10.1021/acs.energyfuels.8b00378.
[89] SUN J M, WANG Y.Recent advances in catalytic conversion of ethanol to chemicals[J]. ACS catalysis, 2014, 4(4): 1078-1090. DOI: 10.1021/cs4011343.
[90] YANG D, XIONG L, WANG B, et al.Preparation and characterization of epoxidized microbial oil[J]. Korean journal of chemical engineering, 2016, 33(3): 964-971. DOI: 10.1007/s11814-015-0216-6.
[91] JI D, FANG Z, HE W, et al.Polyurethane rigid foams formed from different soy-based polyols by the ring opening of epoxidised soybean oil with methanol, phenol, and cyclohexanol[J]. Industrial crops and products, 2015, 74: 76-82. DOI: 10.1016/j.indcrop.2015.04.041.
[92] 汪多仁. 绿色油脂深加工产品[M]. 北京: 科学技术文献出版社, 2007.
[93] WU Z Y, LI C, LIANG H W, et al.Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte chemie international edition, 2013, 52(10): 2925-2929. DOI: 10.1002/anie.201209676.
[94] LUO M T, LI H L, HUANG C, et al.Cellulose-based absorbent production from bacterial cellulose and acrylic acid: synthesis and performance[J]. Polymers, 2018, 10(7): 702. DOI: 10.3390/polym10070702.
[95] SULAEVA I, HENNIGES U, ROSENAU T, et al.Bacterial cellulose as a material for wound treatment: Properties and modifications. A review[J]. Biotechnology advances, 2015, 33(8): 1547-1571. DOI: 10.1016/j. biotechadv.2015.07.009.
[96] WANG B, ZHANG H R, HUANG C, et al.Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites[J]. RSC advances, 2017, 7(67): 42113-42122. DOI: 10.1039/ C7RA07731A.
[97] SHI Z J, ZHANG Y, PHILLIPS G O, et al.Utilization of bacterial cellulose in food[J]. Food hydrocolloids, 2014, 35: 539-545. DOI: 10.1016/j.foodhyd.2013.07.012.
[98] ZHANG H R, GUO H J, WANG B, et al.Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution[J]. Carbohydrate polymers, 2016, 136: 171-176. DOI: 10.1016/j.carbpol.2015.09.029.
[99] XIU Z L, ZENG A P.Present state and perspective of downstream processing of biologically produced 1, 3-propanediol and 2, 3-butanediol[J]. Applied microbiology and biotechnology, 2008, 78(6): 917-926. DOI: 10.1007/s00253-008-1387-4.
[100] DELHOMME C, WEUSTER-BOTZ D, KÜHN F E. Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media[J]. Green chemistry, 2009, 11(1): 13-26. DOI: 10.1039/B810684C.
[101] DUSSELIER M, VAN WOUWE P, DEWAELE A, et al.Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis[J]. Energy & environmental science, 2013, 6(5): 1415-1442. DOI: 10.1039/C3EE00069A.
Outlines

/