[1] ZHAO L, LUO J, LI Y, et al.Emulsion-electrospinning n-octadecane/silk composite fiber as environmental- friendly form-stable phase change materials[J]. Journal of applied polymer science, 2017, 134(47): 45538. DOI: 10.1002/app.45538.
[2] BENMOUSSA D, MOLNAR K, HANNACHE H, et al.Novel thermo-regulating comfort textile based on poly(allyl ethylene diamine)/n-hexadecane microcapsules grafted onto cotton fabric[J]. Advances in polymer technology, 2016, 37(2): 419-428. DOI: 10.1002/adv.21682.
[3] LOMAX G R.Breathable polyurethane membranes for textile and related industries[J]. Journal of materials chemistry, 2007, 17(27): 2775-2784. DOI: 10.1039/B703447B.
[4] GUGLIUZZA A, DRIOLI E.A review on membrane engineering for innovation in wearable fabrics and protective textiles[J]. Journal of membrane science, 2013, 446: 350-375. DOI: 10.1016/j.memsci.2013.07.014.
[5] LU Y, XIAO X D, ZHAN Y J, et al.Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage[J]. ACS applied materials & interfaces, 2018, 10(15): 12759-12767. DOI: 10.1021/acsami.8b02057.
[6] LIU C Z, RAO Z H, ZHAO J T, et al.Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement[J]. Nano energy, 2015, 13: 814-826. DOI: 10.1016/j.nanoen.2015. 02.016.
[7] 蔡以兵, 孙桂岩, 刘盟盟, 等. 定形相变复合材料的研究进展——静电纺丝法[J]. 高分子通报, 2015(2): 18-25. DOI: 10.14028/j.cnki.1003-3726.2015.02.003.
[8] LU Y, XIAO X D, CAO Z Y, et al.Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique[J]. Applied surface science, 2017, 425: 233-240. DOI: 10.1016/j.apsusc.2017.07.035.
[9] MCCANN J T, MARQUEZ M, XIA Y N.Melt coaxial electrospinning: ?a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano letters, 2006, 6(12): 2868-2872. DOI: 10.1021/nl0620839.
[10] ALAY S, GÖDE F, ALKAN C. Preparation and characterization of poly(methylmethacrylate-coglycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage[J]. Fibers and polymers, 2010, 11(8): 1089-1093. DOI: 10.1007/s12221-010-1089-2.
[11] ROMEO V, VITTORIA V, SORRENTINO A.Development of nanostructured thermoregulating textile materials[J]. Journal of nanoscience and nanotechnology, 2008, 8(9): 4399-4403. DOI: 10.1166/jnn.2008.281.
[12] RAHBAR R S, MALEKI H, KALANTARI B.Fabrication of electrospun nanofibre yarn based on nylon 6/microencapsulated phase change materials[J]. Journal of experimental nanoscience, 2016, 11(18): 1402-1415. DOI: 10.1080/17458080.2016.1233582.
[13] VAN DO C, NGUYEN T T T, PARK J S. Phase-change core/shell structured nanofibers based on eicosane/poly (vinylidene fluoride) for thermal storage applications[J]. Korean journal of chemical engineering, 2013, 30(7): 1403-1409. DOI: 10.1007/s11814-013-0046-3.
[14] PEREZ-MASIA R, LOPEZ-RUBIO A, FABRA M J, et al.Biodegradable polyester-based heat management materials of interest in refrigeration and smart packaging coatings[J]. Journal of applied polymer science, 2013, 130(5): 3251-3262. DOI: 10.1002/app.39555.
[15] PÉREZ-MASIÁ R, LÓPEZ-RUBIO A, LAGARÓN J M. Development of zein-based heat-management structures for smart food packaging[J]. Food hydrocolloids, 2013, 30(1): 182-191. DOI: 10.1016/j.foodhyd.2012.05.010.
[16] HU W, YU X.Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure[J]. Renewable energy, 2014, 62: 454-458. DOI: 10.1016/j.renene.2013.07.047.
[17] CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Optimization of solvents for the encapsulation of a phase change material in polymeric matrices by electro- hydrodynamic processing of interest in temperature buffering food applications[J]. European polymer journal, 2015, 72: 23-33. DOI: 10.1016/j.eurpolymj.2015.08.033.
[18] SIROHI S, SINGH D, NAIN R, et al.Electrospun composite nanofibres of PVA loaded with nanoencapsulated n-octadecane[J]. RSC advances, 2015, 5(43): 34377-34382. DOI: 10.1039/C4RA16988C.
[19] SUN S X, XIE R, WANG X X, et al.Fabrication of nanofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent[J]. Journal of materials science, 2015, 50(17): 5729-5738. DOI: 10.1007/s10853-015-9118-https://doi.org/.
[20] RAHIMI M, MOKHTARI J.Fabrication of thermo-regulating hexadecane-polyurethane core-shell composite nanofibrous mat as advanced technical layer: Effect of coaxial nozzle geometry[J]. Journal of industrial textiles, 2016, 47(6): 1134-1151. DOI: 10.1177/1528083716676816.
[21] HAGHIGHAT F, HOSSEINI RAVANDI S A, NASR ESFAHANY M, et al. A comprehensive study on optimizing and thermoregulating properties of core-shell fibrous structures through coaxial electrospinning[J]. Journal of materials science, 2018, 53(6): 4665-4682. DOI: 10.1007/s10853-017-1856-1.
[22] ZDRAVEVA E, FANG J, MIJOVIC B, et al.Electrospun poly(vinyl alcohol)/phase change material fibers: morphology, heat properties, and stability[J]. Industrial & engineering chemistry research, 2015, 54(35): 8706-8712. DOI: 10.1021/acs.iecr.5b01822.
[23] CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Use of phase change materials to develop electrospun coatings of interest in food packaging applications[J]. Journal of food engineering, 2017, 192: 122-128. DOI: 10.1016/j.jfoodeng.2015.01.019.
[24] CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Development of an encapsulated phase change material via emulsion and coaxial electrospinning[J]. Journal of applied polymer science, 2016, 133(36): 43903. DOI: 10.1002/app.43903.
[25] HU W, YU X.Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers[J]. RSC advances, 2012, 2(13): 5580-5584. DOI: 10.1039/C2RA20532G.
[26] SARIER N, ARAT R, MENCELOGLU Y, et al.Production of PEG grafted PAN copolymers and their electrospun nanowebs as novel thermal energy storage materials[J]. Thermochimica acta, 2016, 643: 83-93. DOI: 10.1016/j.tca.2016.10.002.
[27] NGUYEN T T T, PARK J S. Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials[J]. Journal of applied polymer science, 2011, 121(6): 3596-3603. DOI: 10.1002/app.34148.
[28] CHEN C Z, WANG L G, HUANG Y.Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials[J]. Materials letters, 2009, 63(5): 569-571. DOI: 10.1016/ j.matlet.2008.11.033.
[29] SEIFPOOR M, NOURI M, MOKHTARI J.Thermo-regulating nanofibers based on nylon 6,6/polyethylene glycol blend[J]. Fibers and polymers, 2011, 12(6): 706-714. DOI: 10.1007/s12221-011-0706-z.
[30] BABAPOOR A, KARIMI G, KHORRAM M.Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning[J]. Applied thermal engineering, 2016, 99: 1225-1235. DOI: 10.1016/j.applthermaleng.2016.02.026.
[31] CHEN C Z, WANG L G, HUANG Y.Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends[J]. Applied energy, 2011, 88(9): 3133-3139. DOI: 10.1016/j.apenergy.2011.02.026.
[32] CHEN C Z, ZHAO Y Y, LIU W M.Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage[J]. Renewable energy, 2013, 60: 222-225. DOI: 10.1016/ j.renene.2013.05.020.
[33] DANG T T, NGUYEN T T T, CHUNG O H, et al. Fabrication of form-stable poly(ethylene glycol)-loaded poly(vinylidene fluoride) nanofibers via single and coaxial electrospinning[J]. Macromolecular research, 2015, 23(9): 819-829. DOI: 10.1007/s13233-015-3109-y.
[34] LU P, CHEN W S, FAN J J, et al.Thermally triggered nanocapillary encapsulation of lauric acid in polystyrene hollow fibers for efficient thermal energy storage[J]. ASC sustainable chemistry & engineering, 2018, 6(2): 2656-2666. DOI: 10.1021/acssuschemeng.7b04259.
[35] NGUYEN T T T, LEE J G, PARK J S. Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (core/sheath) composite non-woven mats[J]. Macromolecular research, 2011, 19(4): 370-378. DOI: 10.1007/s13233-011-0409-8.
[36] BABAPOOR A, KARIMI G, GOLESTANEH S I, et al.Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization[J]. Applied thermal engineering, 2017, 118: 398-407. DOI: 10.1016/j.applthermaleng.2017.02.119.
[37] REZAEI B, GHANI M, ASKARI M, et al.Fabrication of thermal intelligent core/shell nanofibers by the solution coaxial electrospinning process[J]. Advances in polymer technology, 2016, 35(1): 21534. DOI: 10.1002/adv.21534.
[38] CHEN C Z, WANG L G, HUANG Y.Role of Mn of PEG in the morphology and properties of electrospun PEG/CA composite fibers for thermal energy storage[J]. Aiche journal, 2009, 55(3): 820-827. DOI: 10.1002/aic.11708.
[39] VAN DO C, NGUYEN T T T, PARK J S. Fabrication of polyethylene glycol/polyvinylidene fluoride core/shell nanofibers via melt electrospinning and their characteristics[J]. Solar energy materials and solar cells, 2012, 104: 131-139. DOI: 10.1016/j.solmat.2012.04.029.
[40] REZAEI B, ASKARI M, SHOUSHTARI A M, et al.The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs)[J]. Journal of thermal analysis and calorimetry, 2014, 118(3): 1619-1629. DOI: 10.1007/s10973-014-4025-7.
[41] CHEN C Z, WANG L G, HUANG Y.A novel shape-stabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite[J]. Materials letters, 2008, 62(20): 3515-3517. DOI: 10.1016/j.matlet.2008.03.034.
[42] CHEN C Z, WANG L G, HUANG Y.Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials[J]. Chemical engineering journal, 2009, 150(1): 269-274. DOI: 10.1016/j.cej.2009.03.007.
[43] CHEN C Z, LIU S S, LIU W M, et al.Synthesis of novel solid-liquid phase change materials and electrospinning of ultrafine phase change fibers[J]. Solar energy materials and solar cells, 2012, 96(1): 202-209. DOI: 10.1016/j.solmat.2011.09.057.
[44] CAI Y B, KE H Z, LIN L, et al.Preparation, morphology and thermal properties of electrospun fatty acid eutectics/ polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage[J]. Energy conversion and management, 2012, 64: 245-255. DOI: 10.1016/j.enconman.2012.04.018.
[45] KE H Z, LI D W, WANG X L, et al.Thermal and mechanical properties of nanofibers-based form-stable PCMs consisting of glycerol monostearate and polyethylene terephthalate[J]. Journal of thermal analysis and calorimetry, 2013, 114(1): 101-111. DOI: 10.1007/s10973-012-2856-7.
[46] CAI Y B, SUN G Y, LIU M M, et al.Fabrication and characterization of capric-lauric-palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval[J]. Solar energy, 2015, 118: 87-95. DOI: 10.1016/j.solener.2015.04.042.
[47] ZHANG Z L, ZHANG X X, SHI H F, et al.Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core[J]. Textile research journal, 2015, 86(5): 493-501. DOI: 10.1177/0040517515592815.
[48] CHEN W W, WENG W G.Ultrafine lauric-myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning[J]. Applied energy, 2016, 173: 168-176. DOI: 10.1016/j.apenergy.2016.04.061.
[49] KE H Z, LI Y G.A series of electrospun fatty acid ester/polyacrylonitrile phase change composite nanofibers as novel form-stable phase change materials for storage and retrieval of thermal energy[J]. Textile research journal, 2016, 87(19): 2314-2322. DOI: 10.1177/0040517516669078.
[50] KE H Z.Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes[J]. Journal of thermal analysis and calorimetry, 2017, 129(3): 1533-1545. DOI: 10.1007/s10973-017-6399-9.
[51] SONG X F, CAI Y B, HUANG C, et al.Cu nanoparticles improved thermal property of form-stable phase change materials made with carbon nanofibers and LA-MA-SA eutectic mixture[J]. Journal of nanoscience and nanotechnology, 2018, 18(4): 2723-2731. DOI: 10.1166/jnn.2018.14361.
[52] ZONG X, CAI Y B, SUN G Y, et al.Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/ retrieval[J]. Solar energy materials and solar cells, 2015, 132: 183-190. DOI: 10.1016/j.solmat.2014.08.030.
[53] GOLESTANEH S I, KARIMI G, BABAPOOR A, et al.Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles[J]. Applied energy, 2018, 212: 552-564. DOI: 0.1016/j.apenergy.2017.12.055.
[54] KE H Z, GHULAM M U H, LI Y G, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Renewable energy, 2016, 99: 1-9. DOI: 10.1016/j.renene.2016.06.033.
[55] CAI Y B, GAO C T, XU X L, et al.Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J]. Solar energy materials and solar cells, 2012, 103: 53-61. DOI: 10.1016/j. solmat.2012.04.031.
[56] KE H Z, CAI Y B, WEI Q F, et al.Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form‐stable phase change materials for storage and retrieval of thermal energy[J]. International journal of energy research, 2013, 37(6): 657-664. DOI: 10.1002/er.2888.