[1] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the electrochemical society, 2004, 151(11): A1969-A1976. DOI: 10.1149/1.1806394. [2] BUSCHE M R, ADELHELM P, SOMMER H, et al. Systematical electrochemical study on the parasitic shuttle- effect in lithium-sulfur-cells at different temperatures and different rates[J]. Journal of power sources, 2014, 259: 289-299. DOI: 10.1016/j.jpowsour.2014.02.075. [3] 唐致远, 高飞, 薛建军, 等. 锂离子电池聚合物电解质的研究进展[J]. 化工进展, 2004, 23(12): 1308-1311. DOI: 10.3321/j.issn:1000-6613.2004.12.007. [4] MANTHIRAM A, FU Y Z, SU Y S. Challenges and Prospects of Lithium–Sulfur Batteries[J]. Accounts of Chemical Research, 2012, 46(5), 1125-1134. doi:10.1021/ar300179v. [5] YAN Y, YIN Y X, SEN X, et al. High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte[J]. Electrochimica acta, 2013, 91: 58-61. DOI: 10.1016/j.electacta.2012.12.077. [6] CA?AS N A, HIROSE K, PASCUCCI B, et al. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy[J]. Electrochimica acta, 2013, 97: 42-51. DOI: 10.1016/j.electacta.2013.02.101. [7] LIU J, LIU B, WANG C W, et al. Walnut shell–derived activated carbon: Synthesis and its application in the sulfur cathode for lithium–sulfur batteries[J]. Journal of alloys and compounds, 2017, 718: 373-378. DOI: 10.1016/j.jallcom.2017.05.206. [8] KUMARESAN K, MIKHAYLIK Y, WHITE R E. A mathematical model for a lithium-sulfur cell[J]. Journal of the electrochemical society, 2008, 155(8): A576-A582. [9] YUE L, WANG S Q, ZHAO X Y, et al. Nano-silicon composites using poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode[J]. Journal of materials chemistry, 2012, 22(3): 1094-1099. DOI: 10.1039/C1JM14568A. [10] YUE L, ZHONG H X, TANG D P, et al. Porous Si coated with S-doped carbon as anode material for lithium ion batteries[J]. Journal of solid state electrochemistry, 2012, 17(4): 961-968. DOI: 10.1007/s10008-012-1944-8. [11] SHAO D, TANG D P, YANG J W, et al. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries[J]. Journal of power sources, 2015, 297: 344-350. DOI: 10.1016/j.jpowsour.2015.08.037. [12] YUE L, ZHONG H X, ZHANG L Z. Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process[J]. Electrochimica acta, 2012, 76: 326-332. DOI: 10.1016/j.electacta.2012.05.038. [13] HU J J, LI G R, GAO X P. Current status, problems and challenges in lithium-sulfur batteries[J]. Journal of inorganic materials, 2013, 28(11): 1181-1186. DOI: 10.3724/SP.J.1077.2013.13387. [14] 韩飞,陆安慧,李文翠. 结构可控的炭基材料在锂离子电池中的应用[J].化学进展, 2012, 24(12): 2443-2456. [15] ZHANG Q, HUANG J Q, QIAN W Z, et al. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9(8): 1237-1265. DOI: 10.1002/smll.201203252. [16] LIU X Y, PENG H J, ZHANG Q, et al. Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range electron pathways with superior Li-ion storage performance[J]. ACS sustainable chemistry & engineering, 2014, 2(2): 200-206. DOI: 10.1021/sc400239u. [17] CHEN J J, ZHANG Q, SHI Y N, et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries[J]. Physical chemistry chemical physics, 2012, 14(16): 5376-5382. DOI: 10.1039/C2CP40141J. [18] GUO J C, XU Y H, WANG C S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano letters, 2011, 11(10): 4288-4294. DOI: 10.1021/nl202297p. [19] 吴峰, 吴生先, 陈人杰, 等. 多壁碳纳米管对单质硫正极材料电化学性能的改性[J]. 新型炭材料, 2010, 25(6): 421-425. [20] 陈军政,吴峰,陈人杰, 等. 不同管径多壁碳纳米管与硫含量对锂硫电池单质硫正极电化学性能的影响[J]. 新型炭材料, 2013, 28(6): 428-434. [21] ZHOU G M, WANG D W, LI F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & environmental science, 2012, 5(10): 8901-8906. DOI: 10.1039/C2EE22294A. [22] HAN S C, SONG M S, LEE H, et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries[J]. Journal of the electrochemical society, 2003, 150(7): A889-A893. DOI: 10.1149/1.1576766. [23] AHN W, KIM K B, JUNG K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. Journal of power sources, 2012, 202: 394-399. DOI:10.1016/j.jpowsour.2011.11.074. [24] DENG W N, HU A P, CHEN X H, et al. Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries[J]. Journal of power sources, 2016, 322: 138-146. DOI: 10.1016/j.jpowsour.2016.05.024. [25] LIANG X, WEN Z Y, LIU Y, et al. A composite of sulfur and polypyrrole?multi walled carbon combinatorial nanotube as cathode for Li/S battery[J]. Journal of power sources, 2012, 206: 409-413. DOI: 10.1016/j.jpowsour.2012.01.123. [26] ZHANG Y G, ZHAO Y, DOAN T N L, et al. A novel sulfur/polypyrrole/multi-walled carbon nanotube nanocomposite cathode with core?shell tubular structure for lithium rechargeable batteries[J]. Solid state Ionics, 2013, 238: 30-35. DOI: 10.1016/j.ssi.2013.03.006. [27] ZHANG Y G, ZHAO Y, BAKENOV Z, et al. Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries[J]. Electrochimica acta, 2014, 143: 49-55. DOI: 10.1016/j. electacta.2014.07.148. [28] ZHENG G Y, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano letters, 2011, 11(10): 4462-4467. DOI: 10.1021/nl2027684. [29] LEE J S, KIM W, JANG J, et al. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries[J]. Advanced energy materials, 2017, 7(5): 1601943. DOI: 10.1002/ aenm.201601943. [30] XU H, DENG Y F, SHI Z C, et al. Graphene-encapsulated sulfur (GES) composites with a core–shell structure as superior cathode materials for lithium–sulfur batteries[J]. Journal of materials chemistry A, 2013, 1(47): 15142-15149. DOI: 10.1039/C3TA13541A. [31] KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. DOI: 10.1038/nature07719. [32] WANG J Z, LU L, CHOUCAIR M, et al. Sulfur-graphene composite for rechargeable lithium batteries[J]. Journal of power sources, 2011, 196(16): 7030-7034. DOI: 10.1016/ j.jpowsour.2010.09.106. [33] CHEN R J, ZHAO T, LU J, et al. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries[J]. Nano letters, 2013, 13(10): 4642-4649. DOI: 10.1021/nl4016683. [34] ZHAO Z X, WANG S, LIANG R, et al. Graphene- wrapped chromium-MOF(MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries[J]. Journal of materials chemistry A, 2014, 2(33): 13509-13512. DOI: 10.1039/C4TA01241K. [35] HUANG J Q, LIU X F, ZHANG Q, et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from -40 to 60oC[J]. Nano energy, 2013, 2(2): 314-321. DOI: 10.1016/j. nanoen.2012.10.003. [36] JI L W, RAO M M, ZHENG H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American chemical society, 2011, 133(46): 18522-18525. DOI: 10.1021/ja206955k. [37] PAPANDREA B, XU X, XU Y X. et al. Three- dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery[J]. Nano research, 2016, 9(1): 240-248. DOI: 10.1007/s12274-016-1005-1. [38] SHAO D, TANG D P, MAI Y J, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries[J]. Journal of materials chemistry A, 2013, 1(47): 15068-15075. DOI: 10.1039/C3TA13616G. [39] LIU J, WANG C W, LIU B, et al. Rational synthesis of MnO2@CMK/S composite as cathode materials for Lithium–sulfur batteries[J]. Materials letters, 2017, 195: 236-239. DOI: 10.1016/j.matlet.2017.02.116. [40] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte chemie, 2011, 123(26): 6026-6030. DOI: 10.1002/ange.201100637. [41] ZHANG J, YE H, YIN Y X, et al. Core-shell meso/microporous carbon host for sulfur loading toward applications in lithium-sulfur batteries[J]. Journal of energy chemistry, 2014, 23(3): 308-314. DOI: 10.1016/S2095-4956(14)60152-2. [42] ZHANG C F, WU H B, YUAN C Z, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte chemie, 2012, 124(38): 9730-9733. DOI: 10.1002/ange.201205292. [43] ZHANG S S, TRAN D T. A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density[J]. Journal of power sources, 2012, 211: 169-172. DOI: 10.1016/j.jpowsour.2012.04.006. [44] ZHANG W H, QIAO D, PAN J X, et al. A Li+ -conductive microporous carbon-sulfur composite for Li-S batteries[J]. Electrochimica acta, 2013, 87: 497-502. DOI: 10.1016/j.electacta.2012.09.086. [45] WU H B, WEI S Y, ZHANG L Z, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European journal, 2013, 19(33): 10804-10808. DOI: 10.1002/chem.201301689. [46] WANG J L, YANG J, XIE J Y, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced materials, 2002, 14(13-14): 963-965. DOI: 10.1002/1521-4095(20020705)14:13/14<963:: AID-ADMA963>3.0.CO;2-P. [47] WANG J L, WANG Y W, HE X M, et al. Electrochemical characteristics of sulfur composite cathode materials in rechargeable lithium batteries[J]. Journal of power sources, 2004, 138(1-2): 271-273. DOI: 10.1016/j.jpowsour.2004.06.032. [48] XIN S, GU L, ZHAO N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American chemical society, 2012, 134(45): 18510-18513. DOI: 10.1021/ja308170k. [49] HU L, LU Y, LI X N, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J]. Small, 2017, 13(11): 1603533. DOI: 10.1002/smll.201603533. [50] XU T, SONG J X, GORDIN M L, et al. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes[J]. ACS Applied materials & interfaces, 2013, 5(21): 11355-11362. DOI: 10.1021/am4035784. [51] ZHANG Z W, LI Z Q, HAO F B, et al. 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability[J]. Advanced functional materials, 2014, 24(17): 2500-2509. DOI: 10.1002/adfm. 201303080. [52] LI D, HAN F, WANG S, et al. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery[J]. ACS applied materials & interfaces, 2013, 5(6): 2208-2213. DOI: 10.1021/am4000535. [53] DUAN B C, WANG W K, WANG A B, et al. Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries[J]. Journal of materials chemistry A, 2013, 1(42): 13261-13267. DOI: 10.1039/C3TA12634J. [54] SUN Z J, XIAO M, WANG S J, et al. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium-sulfur cathode[J]. Journal of materials chemistry A, 2014, 2(24): 9280-9286. DOI: 10.1039/C4TA00779D. [55] WANG H Q, ZHANG C F, CHEN Z X, et al. Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium?sulfur batteries[J]. Carbon, 2015, 81: 782-787. DOI: 10.1016/j.carbon.2014.10.024. [56] HU J L, ZHONG H X, YAN X D, et al. Confining selenium disulfide in 3D sulfur-doped mesoporous carbon for rechargeable lithium batteries[J]. Applied surface science, 2018, 457: 705-711. DOI: 10.1016/j.apsusc.2018.06.296. [57] JIN L M, HE F, CAI W L, et al. Preparation, characterization and application of modified macroporous carbon with Co–N site for long-life lithium-sulfur battery[J]. Journal of power sources, 2016, 328: 536-542. DOI: 10.1016/j.jpowsour.2016.08.060. [58] SEH Z W, LI W Y, CHA J J, et al. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries[J]. Nature communications, 2013, 4: 1331. DOI: 10.1038/ncomms2327. [59] YAN M, ZHANG Y, LI Y, et al. Manganese dioxide nanosheet functionalized sulfur@PEDOT core–shell nanospheres for advanced lithium–sulfur batteries[J]. Journal of materials chemistry A, 2016, 4(24): 9403-9412. DOI: 10.1039/C6TA03211G. [60] YUAN Z, PENG H J, HOU T Z, et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano letters, 2016, 16(1): 519-527. DOI: 10.1021/acs.nanolett.5b04166. [61] HONG X D, LI S L, TANG X N, et al. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries[J]. Journal of alloys and compounds, 2018, 749: 586-593. DOI: 10.1016/j. jallcom.2018.03.331. [62] CHENG P S, XIA X H, LIU H B, et al. Core-shell structured MoS2@S spherical cathode with improved electrochemical performance for lithium-sulfur batteries[J]. Journal of materials science & technology, 2018, 34(10): 1912-1918. DOI: 10.1016/j.jmst.2018.03.018. [63] CUI Z M, ZU C X, ZHOU W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced materials, 2016, 28(32): 6926-6931. DOI: 10.1002/adma.201601382. [64] SHAO D, SMOLIANOVA I, TANG D P, et al. Novel core–shell structured Si/S-doped-carbon composite with buffering voids as high performance anode for Li-ion batteries[J]. RSC advances, 2017, 7(5): 2407-2414. DOI: 10.1039/C6RA26247C. [65] ZHAO X L, MAI Y J, LUO H, et al. Nano-MoS2/poly (3,4-ethylenedioxythiophene): Poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode[J]. Applied surface science, 2014, 288: 736-741. DOI: 10.1016/j.apsusc.2013.10.142. [66] SHAO D, ZHONG H X, ZHANG L Z. Water-soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium-ion batteries[J]. ChemElectroChem, 2014, 1(10): 1679-1687. DOI: 10.1002/celc.201402210. [67] ZHONG H X, HE A Q, LU J D, et al. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries[J]. Journal of power sources, 2016, 336: 107-114. DOI: 10.1016/j.jpowsour.2016.10.041. [68] WANG L, HE X M, LI J J, et al. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries[J]. Journal of materials chemistry, 2012, 22(41): 22077-22081. DOI: 10.1039/C2JM30632H. [69] WANG Z H, CHEN Y L, BATTAGLIA V, et al. Improving the performance of lithium-sulfur batteries using conductive polymer and micrometric sulfur powder[J]. Journal of materials research, 2014, 29(9): 1027-1033. DOI: 10.1557/jmr.2014.85. [70] AI G, DAI Y L, YE Y F, et al. Investigation of surface effects through the application of the functional binders in lithium sulfur batteries[J]. Nano energy, 2015, 16: 28-37. DOI: 10.1016/j.nanoen.2015.05.036. [71] DIRLAM P T, GLASS R S, CHAR K, et al. The use of polymers in Li-S batteries: a review[J]. Journal of polymer science, part A: polymer chemistry, 2017, 55(10): 1635-1668. DOI: 10.1002/pola.28551. [72] Xiao P T, Bu F X, et al. Integration of graphene, nano sulfur and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices [J]. Advanced materials, 2017, 29(40), 1703324. [73] YU Q H, LU Y, LUO Y S, et al. Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium-sulfur batteries[J]. Journal of physics d: applied physics, 2017, 50(11): 115002. DOI: 10.1088/1361-6463/aa5ade. [74] ZHANG Y G, BAKENOV Z, ZHAO Y, et al. One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries[J]. Journal of power sources, 2012, 208: 1-8. DOI: 10.1016/j.jpowsour.2012.02.006. [75] GOPE S, DUTTA D, BHATTACHARYYA A J. Confining sulfur within a zeolite host wrapped inside conducting polymer sheaths as cathode for Li-S battery[J]. Chemistry select, 2016, 1(4): 728-735. DOI: 10.1002/slct.201600185. [76] ZHOU W D, YU Y C, CHEN H, et al. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries[J]. Journal of the American chemical society, 2013, 135(44): 16736-16743. DOI: 10.1021/ja409508q.