[1] Sen R.Biotechnology in petroleum recovery: The microbial EOR[J]. Progress in energy and combustion science, 2008, 34(6): 714-724. DOI: 10.1016/j.pecs.2008.05.001.
[2] DA SILVA T L, REIS A, MEDEIROS R, et al. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry[J]. Applied biochemistry and biotechnology, 2009, 159(2): 568-578. DOI: 10.1007/s12010-008-8443-5.
[3] KOONIN S E.Getting serious about biofuels[J]. Science, 2006, 311(5760): 435. DOI: 10.1126/science.1124886.
[4] 梅洪, 张成武, 殷大聪, 等. 利用微藻生产可再生能源研究概况[J]. 武汉植物学研究, 2008, 26(6): 650-660. DOI: 10.3969/j.issn.2095-0837.2008.06.017.
[5] YEN H W, HU I C, CHEN C Y, et al.Microalgae-based biorefinery - From biofuels to natural products[J]. Bioresource technology, 2013, 135: 166-174. DOI: 10.1016/j.biortech.2012.10.099.
[6] 张琪, 刘淑丽, 张立国, 等. 藻类生物质能源关键技术分析[J]. 东北水利水电, 2013, 31(8): 26-28. DOI: 10.3969/j.issn.1002-0624.2013.08.010.
[7] 范勇, 胡光荣, 王丽娟, 等. 微藻育种研究进展[J]. 生物学杂志, 2017, 34(2): 3-8, 35. DOI: 10.3969/j.issn.2095- 1736.2017.02.003.
[8] 梁英, 陈书秀. 微藻育种的研究现状及前景[J]. 海洋通报, 2008, 27(3): 88-94. DOI: 10.3969/j.issn.1001- 6392.2008.03.014.
[9] LIM D K Y, SCHUHMANN H, SHARMA K, et al. Isolation of high-lipid Tetraselmis suecica strains following repeated UV-C mutagenesis, FACS, and high-throughput growth selection[J]. Bioenergy research, 2015, 8(2): 750-759. DOI: 10.1007/s12155-014-9553-2.
[10] POLINER E, FARRÉ E M, BENNING C.Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp.[J]. Plant cell reports, 2018, 37(10): 1383-1399. DOI: 10.1007/s00299-018-2270-0.
[11] XUE J, NIU Y F, HUANG T, et al.Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metabolic engineering, 2015, 27: 1-9. DOI: 10.1016/j.ymben.2014.10.002.
[12] ZHU J Y, RONG J F, ZONG B N.Factors in mass cultivation of microalgae for biodiesel[J]. Chinese journal of catalysis, 2013, 34(1): 80-100. DOI: 10.1016/S1872-2067(11)60497-X.
[13] BHARATHIRAJA B, CHAKRAVARTHY M, KUMAR R R, et al.Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products[J]. Renewable and sustainable energy reviews, 2015, 47: 634-653. DOI: 10.1016/j.rser.2015.03.047.
[14] OSWALD W J, GOLUEKE C G. Biological transformation of solar energy[J]. Advances in applied microbiology, 1960, 2: 223-262. |DOI: 10.1016/S0065-2164(08)70127-8.
[15] KUMAR K, MISHRA S K, SHRIVASTAV A, et al.Recent trends in the mass cultivation of algae in raceway ponds[J]. Renewable and sustainable energy reviews, 2015, 51: 875-885. DOI: 10.1016/j.rser.2015.06.033.
[16] PULZ O.Photobioreactors: production systems for phototrophic microorganisms[J]. Applied microbiology and biotechnology, 2001, 57(3): 287-293. DOI: 10.1007/ s002530100702.
[17] TREDICI M R, MATERASSI R.From open ponds to vertical alveolar panels: the italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms[J]. Journal of applied phycology, 1992, 4(3): 221-231. DOI: 10.1007/BF02161208.
[18] LIU T Z, WANG J F, HU Q, et al.Attached cultivation technology of microalgae for efficient biomass feedstock production[J]. Bioresource technology, 2013, 127: 216-222. DOI: 10.1016/j.biortech.2012.09.100.
[19] SHEN Y, ZHANG H, XU X, et al.Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii[J]. Bioprocess and biosystems engineering, 2015, 38(3): 481-488. DOI: 10.1007/s00449-014-1287-1.
[20] PEREZGARCIA O, ESCALANTE F M, Debashan L E, et al.Heterotrophic cultures of microalgae: metabolism and potential products[J]. Water research, 2011, 45(1): 11-36. DOI:10.1016/j.watres.2010.08.037.
[21] WU Z Y, SHI X M.Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model[J]. Letters in applied microbiology, 2007, 44(1): 13-18. DOI: 10.1111/j.1472-765X.2006.02038.x.
[22] ZHU L D, TAKALA J, HILTUNEN E, et al.Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production[J]. Bioresource technology, 2013, 144: 14-20. DOI: 10.1016/j.biortech.2013.06.061.
[23] QIN L, WANG Z M, SUN Y M, et al.Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production[J]. Environmental science and pollution research, 2016, 23(9): 8379-8387. DOI: 10.1007/s11356-015-6004-3.
[24] 张文文, 褚华强, 周雪飞, 等. 废水处理与微藻培养耦合技术研究进展[J]. 现代化工, 2018, 38(1): 53-57. DOI: 10.16606/j.cnki.issn0253-4320.2018.01.012.
[25] SHEN Y, YANG T, ZHU W, et al.Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor[J]. Journal of applied phycology, 2017, 29(2): 833-841. DOI: 10.1007/s10811-016-0981-6.
[26] AMER L, ADHIKARI B, PELLEGRINO J.Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity[J]. Bioresource technology, 2011, 102(20): 9350-9359. DOI: 10.1016/j.biortech.2011.08.010.
[27] BARROS A I, GONÇALVES A L, SIMÕES M, et al. Harvesting techniques applied to microalgae: A review[J]. Renewable and sustainable energy reviews, 2015, 41: 1489-1500. DOI: 10.1016/j.rser.2014.09.037.
[28] 郭锁莲, 赵心清, 白凤武. 微藻采收方法的研究进展[J]. 微生物学通报, 2015, 42(4): 721-728. DOI: 10.13344/j.microbiol.china.140577.
[29] 张芳, 程丽华, 徐新华, 等. 能源微藻采收及油脂提取技术[J]. 化学进展, 2012, 24(10): 2062-2072.
[30] 蒋晓菲, 周红茹, 金青哲, 等. 微藻油脂制取技术的研究进展[J]. 中国油脂, 2012, 37(10): 62-66. DOI: 10.3969/j.issn.1003-7969.2012.10.016.
[31] MULBRY W, KONDRAD S, BUYER J, et al.Optimization of an oil extraction process for algae from the treatment of manure effluent[J]. Journal of the American oil chemists’ society, 2009, 86(9): 909-915. DOI: 10.1007/s11746-009-1432-1.
[32] PAN Y, ALAM M A, WANG Z M, et al.One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent[J]. Bioresource technology, 2017, 238: 157-163. DOI: 10.1016/j.biortech.2017.04.038.
[33] 程霜, 崔庆新, 刘敏. 螺旋藻油的超临界提取及GC/MS分析[J]. 食品工业科技, 2001, 22(5): 8-10. DOI: 10.3969/j.issn.1002-0306.2001.05.011.
[34] CHISTI Y.Biodiesel from microalgae[J]. Biotechnology advances, 2007, 25(3): 294-306. DOI: 10.1016/j.biotechadv. 2007.02.001.
[35] WILLIAMS P J L B, LAURENS L M L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics[J]. Energy & environmental science, 2010, 3(5): 554-590. DOI: 10.1039/B924978H.
[36] SHIRAZI H M, KARIMI-SABET J, GHOTBI C.Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition[J]. Bioresource technology, 2017, 239: 378-386. DOI: 10.1016/j.biortech.2017.04.073.
[37] 庞通, 刘建国, 林伟, 等. 藻类生物燃料乙醇制备的研究进展[J]. 渔业现代化, 2012, 39(5): 63-71. DOI: 10.3969/j.issn.1007-9580.2012.05.013.
[38] JOHN R P, ANISHA G S, NAMPOOTHIRI K M, et al.Micro and macroalgal biomass: A renewable source for bioethanol[J]. Bioresource technology, 2011, 102(1): 186-193. DOI: 10.1016/j.biortech.2010.06.139.
[39] RAHEEM A, PRINSEN P, VUPPALADADIYAM A K, et al.A review on sustainable microalgae based biofuel and bioenergy production: recent developments[J]. Journal of cleaner production, 2018, 181:42-59.
[40] AIKAWA S, JOSEPH A, YAMADA R, et al.Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes[J]. Energy & environmental science, 2013, 6(6):1844-1849. DOI: 10.1039/c3ee40305j.
[41] CANTRELL K B, DUCEY T, RO K S, et al.Livestock waste-to-bioenergy generation opportunities[J]. Bioresource technology, 2008, 99(17): 7941-7953. DOI: 10.1016/j. biortech.2008.02.061.
[42] ZHU L D, YAN C, LI Z H.Microalgal cultivation with biogas slurry for biofuel production[J]. Bioresource technology, 2016, 220: 629-636. DOI: 10.1016/j.biortech.2016.08.111.
[43] HIDAKA T, INOUE K, SUZUKI Y, et al.Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage[J]. Bioresource technology, 2014, 170: 83-89. DOI: 10.1016/j.biortech.2014.07.061.
[44] 李晓姝, 王领民, 师文静, 等. 微藻制备生物油的研究进展[J]. 精细与专用化学品, 2011, 19(10): 33-36. DOI: 10.3969/j.issn.1008-1100.2011.10.015.
[45] JENA U, DAS K C.Comparative evaluation of thermochemical Liquefaction and Pyrolysis for bio-oil production from microalgae[J]. Energy & fuels, 2011, 25(11): 5472-5482. DOI: 10.1021/ef201373m.
[46] MIAO X L, WU Q Y, YANG C Y.Fast pyrolysis of microalgae to produce renewable fuels[J]. Journal of analytical and applied pyrolysis, 2004, 71(2): 855-863. DOI: 10.1016/j.jaap.2003.11.004.
[47] BARREIRO D L, PRINS W, RONSSE F, et al.Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects[J]. Biomass and bioenergy, 2013, 53: 113-127. DOI: 10.1016/j.biombioe.2012.12.029.
[48] XU L X, BRILMAN D W F W, WITHAG J A M, et al. Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis[J]. Bioresource technology, 2011, 102(8): 5113-5122. DOI: 10.1016/j.biortech.2011.01.066.
[49] 杨巧利, 杨建强, 马欣欣, 等. 微藻水热液化工艺研究进展[J]. 安徽农业科学, 2015, 43(24): 385-388. DOI: 10.3969/j.issn.0517-6611.2015.24.138.
[50] BILLER P, ROSS A B.Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresource technology, 2011, 102(1): 215-225. DOI: 10.1016/j.biortech.2010.06.028.
[51] BROWN T M, DUAN P G, SAVAGE P E.Hydrothermal liquefaction and gasification of Nannochloropsis sp.[J]. Energy & fuels, 2010, 24(6): 3639-3646. DOI: 10.1021/ ef100203u.
[52] CHAKRABORTY M, MIAO C, MCDONALD A, et al.Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology[J]. Fuel, 2012, 95: 63-70. DOI: 10.1016/j.fuel.2011.10.055.
[53] DU Z Y, LI Y C, WANG X Q, et al.Microwave-assisted pyrolysis of microalgae for biofuel production[J]. Bioresource Technology, 2011, 102(7): 4890-4896. DOI: 10.1016/j.biortech.2011.01.055.
[54] CHEN Y, WU Y L, ZHANG P L, et al.Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/ supercritical ethanol water[J]. Bioresource technology, 2012, 124: 190-198. DOI: 10.1016/j.biortech.2012.08.013.