Welcome to visit Advances in New and Renewable Energy!

System Analysis of Syngas Production with Chemical Looping Gasification of Biomass Coupled CO2 Capture

  • LI Xi ,
  • ZHAO Cong ,
  • LI Yu-ping ,
  • ZHANG Xing-hua ,
  • CHEN Lun-gang ,
  • WANG Chen-guang
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-07-20

  Revised date: 2018-09-27

  Online published: 2018-12-24

Abstract

A model of biomass chemical looping gasification coupled with in situ CO2 capture by CaO was proposed by using Fe2O3 as oxygen carrier and simulated with Aspen Plus software. The effect of fuel reactor operation parameters on bio-syngas production performances were investigated, including fuel reactor temperature (TFR), the mole ratios of oxygen carrier to carbon in biomass (Fe2O3/C), steam to carbon in biomass (Steam/C) and CaO to carbon in biomass (CaO/C). The evaluation index includes syngas composition, H2/CO ratio, carbon distribution in the products, gas efficiency, syngas yield and so on. The results showed that H2 content of 55.2%, H/CO ratio of 1.93, gas efficiency of 78.2%, CO2 content of 15.4%, and syngas yield of 1.95 Nm3/kgbiomass (the yield of H2 and CO in syngas was 1.24 Nm3/kgbiomas) were obtained under the optimized condition (TFR = 825oC, Fe2O3/C = 0.5, Steam/C = 0.71, and CaO/C = 0.26).

Cite this article

LI Xi , ZHAO Cong , LI Yu-ping , ZHANG Xing-hua , CHEN Lun-gang , WANG Chen-guang . System Analysis of Syngas Production with Chemical Looping Gasification of Biomass Coupled CO2 Capture[J]. Advances in New and Renewable Energy, 2018 , 6(6) : 475 -481 . DOI: 10.3969/j.issn.2095-560X.2018.06.003

References

[1] HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations - a review[J]. Chemical engineering science, 2008, 63(18): 4433-4451. DOI: 10.1016/j.ces.2008.05.028.
[2] ADANEZ J, ABAD A, GARCIA-LABIANO F, et al.Progress in chemical-looping combustion and reforming technologies[J]. Progress in energy and combustion science, 2012, 38(2): 215-282. DOI: 10.1016/j.pecs.2011.09.001.
[3] GE H J, GUO W J, SHEN L H, et al.Biomass gasification using chemical looping in a 25 kWth reactor with natural hematite as oxygen carrier[J]. Chemical engineering journal, 2016, 286: 174-183. DOI: 10.1016/j.cej.2015.10.092.
[4] UDOMSIRICHAKORN J, SALAM P A.Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification[J]. Renewable and sustainable energy reviews, 2014, 30: 565-579. DOI: 10.1016/j.rser.2013.10.013.
[5] ZAFAR Q, MATTISSON T, GEVERT B.Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Industrial & engineering chemistry research, 2005, 44(10): 3485-3496. DOI: 10.1021/ie048978i.
[6] CHEN L Y, YANG L, LIU F, et al.Evaluation of multi-functional iron-based carrier from bauxite residual for H2-rich syngas production via chemical-looping gasification[J]. Fuel processing technology, 2017, 156: 185-194. DOI: 10.1016/j.fuproc.2016.10.030.
[7] SARAFRAZ M M, JAFARIAN M, ARJOMANDI M, et al.Potential of molten lead oxide for liquid chemical looping gasification (LCLG): a thermochemical analysis[J]. International journal of hydrogen energy, 2018, 43(9): 4195-4210. DOI: 10.1016/j.ijhydene.2018.01.035.
[8] 罗四维, 李军, 张然, 等. 固体原料化学链技术研究进展与展望[J]. 石油学报(石油加工), 2015, 31(2): 426-435. DOI: 10.3969/j.issn.1001-8719.2015.02.021.
[9] 梁志永, 董长青, 覃吴, 等. 化学链燃烧中铁基载氧体性能优化研究综述[J]. 现代化工, 2017, 37(2): 36-40.
[10] LIU L, CAO Y, MA D R, et al.Process simulation of coal-direct chemical looping gasification for syngas production[J]. RSC advances, 2017, 7(87): 55450-55458. DOI: 10.1039/C7RA10808G.
[11] DUAN W J, YU Q B.Thermodynamic analysis of hydrogen-enriched syngas generation coupled with in situ CO2 capture using chemical looping gasification method[J]. Journal of thermal analysis and calorimetry, 2018, 131(2): 1671-1680. DOI: 10.1007/s10973-017-6596-6.
[12] SIRIWARDANE R, RILEY J, BAYHAM S, et al.50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques[J]. Applied energy, 2018, 213: 92-99. DOI: 10.1016/j.apenergy.2018.01.016.
[13] HALLBERG P, HANNING M, RYDÉN M, et al. Investigation of a calcium manganite as oxygen carrier during 99 h of operation of chemical-looping combustion in a 10 kWth reactor unit[J]. International journal of greenhouse gas control, 2016, 53: 222-229. DOI: 10.1016/j.ijggc.2016.08.006.
[14] PELTOLA P, TYNJÄLÄ T, RITVANEN J, et al. Mass, energy, and exergy balance analysis of chemical looping with oxygen uncoupling (CLOU) process[J]. Energy conversion and management, 2014, 87: 483-494. DOI: 10.1016/j.enconman.2014.07.044.
[15] 范峻铭, 洪慧, 金红光. 基于化学链燃烧生物质煤互补的天然气动力联产系统研究[J]. 工程热物理学报, 2017, 38(7): 1466-1471.
[16] YANG J, MA L P, DONG S L, et al.Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation[J]. Fuel, 2017, 194: 448-459. DOI: 10.1016/j.fuel.2016.12.077.
[17] GUO Q J, CHENG Y, LIU Y Z, et al.Coal chemical looping gasification for syngas generation using an iron- based oxygen carrier[J]. Industrial & engineering chemistry research, 2014, 53(1): 78-86. DOI: 10.1021/ie401568x.
[18] 刘帅, 黄振, 何方, 等. NiFe2O4为载氧体的生物质半焦化学链燃烧热力学模拟研究[J]. 新能源进展, 2016, 4(3): 172-178. DOI: 10.3969/j.issn.2095-560X.2016.03.002.
[19] 王东营, 刘永卓, 王博, 等. 餐厨垃圾化学链气化制备合成气[J]. 高校化学工程学报, 2018, 32(1): 229-236. DOI: 10.3969/j.issn.1003-9015.2018.01.031.
[20] HU J J, LI C, GUO Q H, et al.Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier[J]. Bioresource technology, 2018, 263: 273-279. DOI: 10.1016/j.biortech.2018.02.064.
[21] 曾骥敏, 肖睿, 衡丽君, 等. 生物质化学链气化制备高H2/CO物质的量比的合成气[J]. 燃烧科学与技术, 2016, 22(3): 229-235.
[22] ZENG J M, XIAO R, ZENG D W, et al.High H2/CO ratio syngas production from chemical looping gasification of sawdust in a dual fluidized bed gasifier[J]. Energy & fuels, 2016, 30(3): 1764-1770. DOI: 10.1021/acs.energyfuels.5b02204.
[23] UDOMSIRICHAKORN J, BASU P, SALAM P A, et al.CaO-based chemical looping gasification of biomass for hydrogen-enriched gas production with in situ CO2 capture and tar reduction[J]. Fuel processing technology, 2014, 127: 7-12. DOI: 10.1016/j.fuproc.2014.06.007.
[24] HU G X, HUANG H.Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent[J]. Biomass and bioenergy, 2009, 33(5): 899-906. DOI: 10.1016/j.biombioe.2009.02.006.
[25] 谢娜, 诸林, 蒋鹏. 地沟油化学链强化重整制氢工艺热力学分析[J]. 环境科学与技术, 2016, 39(7): 59-63.
[26] 诸林, 蒋鹏, 范峻铭. 化学链重整联合CO2捕集制氢系统热力学分析[J]. 太阳能学报, 2015, 36(8): 1978-1984. DOI: 10.3969/j.issn.0254-0096.2015.08.030.
[27] ORTIZ A L, HARRISON D P.Hydrogen production using sorption-enhanced reaction[J]. Industrial & engineering chemistry research, 2001, 40(23): 5102-5109. DOI: 10.1021/ie001009c.
[28] 王智化, 王勤辉, 骆仲泱, 等. 新型煤气化燃烧集成制氢系统的热力学研究[J]. 中国电机工程学报, 2005, 25(12): 91-97. DOI: 10.3321/j.issn:0258-8013.2005.12.017.
[29] 黄振, 刘帅, 李德波, 等. 基于Fe2O3载氧体的生物质化学链气化热力学模拟研究[J]. 太阳能学报, 2017, 38(5): 1421-1430.
Outlines

/