Welcome to visit Advances in New and Renewable Energy!

Identity Symbol of Gas Hydrate in the Southwestern Barents Sea

  • CONG Xiao-rong ,
  • YANG Chu-peng ,
  • MAO Xiao-ping ,
  • LIU Li-hua ,
  • YANG Rui ,
  • SU Ming
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China;
    5. Guangzhou Marine Geology Survey, Guangzhou 510760, China;
    6. Department of Energy Resources, China University of Geosciences, Beijing 100083, China

Received date: 2018-03-28

  Revised date: 2018-08-25

  Online published: 2018-12-24

Abstract

The Southwestern (SW) Barents Sea is a part of the Arctic Ocean located north of Norway. The geological conditions in the SW Barents Sea are suitable for the formation of gas hydrate. There are obvious identification marks of gas hydrate. The data related to gas hydrate in SW Barents Sea are collected and sorted in this paper. The finds are concluded as following. Geophysical signs are pointed in the western part of the Loppa High and the western Hammerfest Basin, such as the bottom simulating reflectors (BSR), enhanced reflections, and shallow gas accumulations. Pockmarks, gas chimneys, gas leakage faults and other geological signs also distribute in Asterias Fault Complex and in the western Hammerfest Basin. Therefore, the western part of the Loppa High and the western Hammerfest Basin of SW Barents Sea are the main gas hydrate favorable exploration target areas. The analysis of all kinds of identification markers of gas hydrate and geological conditions infer that gas hydrate deposits are closely related to the fluid migrating pathways in the SW Barents Sea.

Cite this article

CONG Xiao-rong , YANG Chu-peng , MAO Xiao-ping , LIU Li-hua , YANG Rui , SU Ming . Identity Symbol of Gas Hydrate in the Southwestern Barents Sea[J]. Advances in New and Renewable Energy, 2018 , 6(6) : 539 -548 . DOI: 10.3969/j.issn.2095-560X.2018.06.12

References

[1] MAX M D.Natural gas hydrate in oceanic and permafrost environments[M]. Switzerland: Springer Science & Business Media, 2003, 432. DOI: 10.1007/978-94-011-4387-5.
[2] VADAKKEPULIYAMBATTA S, BÜNZ S, MIENERT J, et al. Distribution of subsurface fluid-flow systems in the SW Barents Sea[J]. Marine and Petroleum Geology, 2013, 43: 208-221. DOI: 10.1016/j.marpetgeo.2013.02.007.
[3] LABERG J S, ANDREASSEN K, KNUTSEN S M.Inferred gas hydrate on the Barents Sea shelf-a model for its formation and a volume estimate[J]. Geo-marine letters, 1998, 18(1): 26-33. DOI: 10.1007/s003670050048.
[4] ANDREASSEN K, HOGSTAD K, BERTEUSSEN K A.Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly[J]. First break, 1990, 8(6): 235-245. DOI: 10.3997/1365-2397.1990012.
[5] VOGT P R, GARDNER J, CRANE K.The Norwegian-Barents-Svalbard (NBS) continental margin: introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane[J]. Geo-marine letters, 1999, 19(1/2): 2-21. DOI: 10.1007/s003670050088.
[6] PAULL C, DALLIMORE S, HUGHES-CLARKE J, et al.Tracking the decomposition of submarine permafrost and gas hydrate under the shelf and slope of the Beaufort Sea[C]//7th International Conference on Gas Hydrates. Shell, Edinburgh, UK, 2011.
[7] PAULL C K, DALLIMORE S R, HUGHES CLARKE J E, et al. Active seafloor gas vents on the Shelf and upper Slope in Canadian Beaufort Sea[C]//Presented at the Fall Meeting of the American Geophysical Union. San Francisco, California: American Geophysical Union, 2012.
[8] VADAKKEPULIYAMBATTA S, HORNBACH M J, BÜNZ S, et al. Controls on gas hydrate system evolution in a region of active fluid flow in the SW Barents Sea[J]. Marine and petroleum geology, 2015, 66: 861-872. DOI: 10.1016/j.marpetgeo.2015.07.023.
[9] MIENERT J, POSEWANG J.Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments[J]. Geo-marine letters, 1999, 19(1/2): 143-149. DOI: 10.1007/s003670050101.
[10] MIENERT J, BÜNZ S, GUIDARD S, et al. Ocean bottom seismometer investigations in the Ormen Lange area offshore mid-Norway provide evidence for shallow gas layers in subsurface sediments[J]. Marine and petroleum geology, 2005, 22(1/2): 287-297. DOI: 10.1016/j.marpetgeo.2004.10.020.
[11] CHAND S, MIENERT J, ANDREASSEN K, et al.Gas hydrate stability zone modelling in areas of salt tectonics and pockmarks of the Barents Sea suggests an active hydrocarbon venting system[J]. Marine and petroleum geology, 2008, 25(7): 625-636. DOI: 10.1016/j.marpetgeo. 2007.10.006.
[12] MILLER J J, LEE M W, VON HUENE R.An Analysis of a Seismic Reflection from the Base of a Gas Hydrate Zone, Offshore Peru[J]. AAPG bulletin, 1991, 75(5): 910-924.
[13] ANDREASSEN K, HART P E, MACKAY M.Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates[J]. Marine geology, 1997, 137(1/2): 25-40. DOI: 10.1016/S0025-3227(96)00076-X.
[14] ANDREASSEN K, HANSEN T.Inferred gas hydrates offshore Norway and Svalbard[J]. Norsk geologisk tidsskrift, 1995, 45: 10-34.
[15] GABRIELSEN R H, FÆRSETH R B, JENSEN L N, et al. Structural elements of the Norwegian continental shelf, part I: the Barents Sea region[J]. NPD bulletin 1990, 6: 45.
[16] CHAND S, THORSNES T, RISE L, et al. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation[J]. Earth and planetary science letters, 2012, 331-332: 305-314. DOI: 10.1016/j.epsl.2012.03.021.
[17] OSTANIN I, ANKA Z, DI PRIMIO R, et al. Identification of a large Upper Cretaceous polygonal fault network in the Hammerfest basin: Implications on the reactivation of regional faulting and gas leakage dynamics, SW Barents Sea[J]. Marine geology, 2012, 332-334: 109-125. DOI: 10.1016/j.margeo.2012.03.005.
[18] NICKEL J C, DI PRIMIO R, MANGELSDORF K, et al. Characterization of microbial activity in pockmark fields of the SW-Barents Sea[J]. Marine geology, 2012, 332-334: 152-162. DOI: 10.1016/j.margeo.2012.02.002.
[19] HOVLAND M, JUDD A G.Seabed pockmarks and seepages: impact on geology, biology and marine environment[M]. London: Graham and Trotman, 1988.
[20] OSTANIN I, ANKA Z, DI PRIMIO R, et al.Hydrocarbon plumbing systems above the Snøhvit gas field: structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents Sea[J]. Marine and petroleum geology, 2013, 43: 127-146. DOI: 10.1016/j.marpetgeo.2013.02.012.
[21] BJORØY M, HALL P B, FERRIDAY I L, et al. Triassic source rocks of the Barents Sea and Svalbard[J]. Search and discovery, 2010, 10219: 7.
[22] CARTWRIGHT J.The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J]. Journal of the geological society, 2007, 164(5): 881-893. DOI: 10.1144/0016-76492006-143.
[23] DORÉ A G.Barents Sea geology, petroleum resources and commercial potential[J]. Arctic, 1995, 48(3): 207-221. DOI: 10.14430/arctic1243.
[24] CARTWRIGHT J, HUUSE M, APLIN A.Seal bypass systems[J]. AAPG bulletin, 2007, 91(8): 1141-1166. DOI: 10.1306/04090705181.
[25] OHM S E, KARLSEN D A, AUSTIN T J F. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea[J]. AAPG bulletin, 2008, 92(9): 1191-1223. DOI: 10.1306/06180808028.
[26] GUDLAUGSSON S T, FALEIDE J I, JOHANSEN S E, et al.Late Palaeozoic structural development of the South-western Barents Sea[J]. Marine and petroleum geology, 1998, 15(1): 73-102. DOI: 10.1016/S0264-8172(97)00048-2.
[27] WORSLEY D.The post-Caledonian development of Svalbard and the western Barents Sea[J]. Polar research, 2008, 27(3): 298-317. DOI: 10.1111/j.1751-8369.2008. 00085.x.
[28] SMELROR M, PETROV O V, LARSSEN G B, et al.Geological history of the Barents Sea[M]. Trondheim, Norway: NGU, 2009.
[29] JOHANSEN S E, OSTISTY B K, BIRKELAND Ø, et al.Hydrocarbon potential in the Barents Sea region: play distribution and potential[M]//VORREN T O, BERGSAGER E, DAHL-STAMNES Ø A, et al. Arctic Geology and Petroleum Potential. Amsterdam: Elsevier, 1993: 273-320. DOI: 10.1016/B978-0-444-88943-0.50024-1.
[30] BREKKE H, RIIS F.Mesozoic tectonics and basin evolution of the Norwegian Shelf between 60°N and 72°N[J]. Norsk geologisk tidsskrift, 1987, 67: 295-322.
[31] RIIS F, VOLLSET J, SAND M.Tectonic development of the western margin of the Barents Sea and adjacent areas[J]//HALBOUTY M T. Future Petroleum Provinces of the World. AAPG, 1986: 661-676.
[32] ZIEGLER P A.Evolution of the Arctic-North Atlantic and the Western Tethys[M]. Tulsa, Oklahoma, U.S.A: AAPG, 1988: 198.
[33] FALEIDE J I, VÅGNES E, GUDLAUGSSON S T. Late Mesozoic-Cenozoic evolution of the south-western Barents Sea in a regional rift-shear tectonic setting[J]. Marine and petroleum geology, 1993, 10(3): 186-214. DOI: 10.1016/0264-8172(93)90104-Z.
[34] ELDHOLM O, FALEIDE J I, MYHRE A M. Continent- ocean transition at the western Barents Sea/Svalbard continental margin[J]. Geology, 1987, 15(12): 1118-1122. DOI: 10.1130/0091-7613(1987)15<1118:CTATWB>2.0.CO;2.
[35] FALEIDE J I, SOLHEIM A, FIEDLER A, et al.Late Cenozoic evolution of the western Barents Sea-Svalbard continental margin[J]. Global and planetary change, 1996, 12(1/4): 53-74. DOI: 10.1016/0921-8181(95)00012-7.
[36] TALWANI M, ELDHOLM O. Evolution of the Norwegian- Greenland Sea[J]. GSA bulletin, 1977, 88(7): 969-999. DOI: 10.1130/0016-7606(1977)88<969:EOTNS>2.0.CO;2.
[37] MYHRE A M, ELDHOLM O, SUNDVOR E.The margin between Senja and Spitsbergen fracture zones: Implications from plate tectonics[J]. Tectonophysics, 1982, 89(1/3): 33-50. DOI: 10.1016/0040-1951(82)90033-6.
[38] VORREN T O, RICHARDSEN G, KNUTSEN S M, et al.Cenozoic erosion and sedimentation in the western Barents Sea[J]. Marine and petroleum geology, 1991, 8(3): 317-340. DOI: 10.1016/0264-8172(91)90086-G.
[39] SOLHEIM A, KRISTOFFERSEN Y.Sediments above the upper regional unconformity: thickness, seismic stratigraphy and outline of the glacial history[M]. Norsk Polarinst Skr, 1984, 179B: 26.
[40] EIDVIN T, JANSEN E, RIIS F.Chronology of Tertiary fan deposits off the western Barents Sea: implications for the uplift and erosion history of the Barents Shelf[J]. Marine geology, 1993, 112(1/4): 109-131. DOI: 10.1016/0025-3227(93)90164-Q.
[41] ANDREASSEN K, LABERG J S, VORREN T O.Seafloor geomorphology of the SW Barents Sea and its glaci- dynamic implications[J]. Geomorphology, 2008, 97(1/2): 157-177. DOI: 10.1016/j.geomorph.2007.02.050.
[42] FALEIDE J I, TSIKALAS F, BREIVIK A J, et al.Structure and evolution of the continental margin off Norway and the Barents Sea[J]. Episodes, 2008, 31(1): 82-91.
[43] TASIANAS A, BÜNZ S, BELLWALD B, et al. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea[J]. Marine geology, 2018, 403: 247-261. DOI: 10.1016/j.margeo.2018.06.012.
[44] OSTANIN I, ANKA Z, DI PRIMIO R.Role of faults in Hydrocarbon leakage in the Hammerfest Basin, SW Barents Sea: insights from seismic data and numerical modelling[J]. Geosciences, 2017, 7(28): 30. DOI: 10.3390/geosciences7020028.
[45] MURILLO W A, VIETH-HILLEBRAND A, HORSFIELD B, et al.Petroleum source, maturity, alteration and mixing in the southwestern Barents Sea: New insights from geochemical and isotope data[J]. Marine and petroleum geology, 2016, 70: 119-143. DOI: 10.1016/j.marpetgeo.2015.11.009.
[46] Collett T S.Gas Hydrate Petroleum Systems in Marine and Arctic Permafrost Environments[J]. GCSSEPM Proceedings, 2009: 6-30. DOI: 10.5724/gcs.09.29.0006.
Outlines

/