[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a.
[2] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. DOI: 10.1038/35104644.
[3] 杜江, 张正富, 彭金辉. 动力锂离子电池正极材料磷酸铁锂的研究进展[J]. 新能源进展, 2013, 1(3): 263-268. DOI: 10.3969/j.issn.2095-560X.2013.03.010.
[4] 李丽叶, 刘鹏程, 朱孔军. 静电纺丝法制备硅碳纳米纤维及其在锂钠离子电池中的应用[J]. 新能源进展, 2016, 4(6): 443-454. DOI: 10.3969/j.issn.2095-560X. 2016.06.004.
[5] WANG L, LU Y H, LIU J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angewandte chemie international edition, 2013, 52(7): 1964-1967. DOI: 10.1002/anie.201206854.
[6] YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American chemical society, 1995, 117(41): 10401-10402. DOI: 10.1021/ja00146a033.
[7] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. DOI: 10.1126/science.1230444.
[8] GUAN B Y, YU X Y, WU H B, et al. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion[J]. Advanced Materials, 2017,29(47): 1703614. DOI: 10.1002/adma.201703614.
[9] XIA W, MAHMOOD A, ZOU R, et al. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2015,8(7): 1837-1866. DOI: 10.1039/c5ee00762c.
[10] XU G Y, NIE P, DOU H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J]. Materials today, 2017, 20(4): 191-209. DOI: 10.1016/j.mattod.2016.10.003.
[11] AVCI C, ARIÑEZ-SORIANO J, CARNÉ‐SÁNCHEZ A, et al. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals[J]. Angewandte chemie international edition, 2015, 54(48): 14417-14421. DOI: 10.1002/anie.201507588.
[12] HAN L, YU X Y, DAVID LOU X W. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-Mixed Oxide for enhanced oxygen evolution[J]. Advanced materials, 2016, 28(23): 4601-4605. DOI: 10.1002/adma.201506315.
[13] ZHANG Z C, CHEN Y F, XU X B, et al. Well-defined metal-organic framework hollow nanocages[J]. Angewandte chemie international edition, 2014, 53(2): 429-433. DOI: 10.1002/anie.201308589.
[14] WAN J Y, KAPLAN A F, ZHENG J, et al. Two dimensional silicon nanowalls for lithium ion batteries[J]. Journal of materials chemistry A, 2014, 2(17): 6051-6057. DOI: 10.1039/c3ta13546b.
[15] AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. Journal of the American chemical society, 2012, 134(34): 13926-13929. DOI: 10.1021/ja3043905.
[16] ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. Journal of the American chemical society, 2013, 135(28): 10210-10213. DOI: 10.1021/ja403330m.
[17] LU G, LI S Z, GUO Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature chemistry, 2012, 4(4): 310-316. DOI: 10.1038/nchem.1272.
[18] KUO C H, TANG Y, CHOU L Y, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American chemical society, 2012, 134(35): 14345-14348. DOI: 10.1021/ja306869j.
[19] PANG M L, CAIRNS A J, LIU Y L, et al. Highly monodisperse MIII-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies[J]. Journal of the American chemical society, 2012, 134(32): 13176-13179. DOI: 10.1021/ja3049282.
[20] GUAN B Y, YU L, LI J, et al. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties[J]. Science advances, 2016, 2(3): e1501554. DOI: 10.1126/sciadv.1501554.
[21] LIU D M, HUXFORD R C, LIN W B. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging[J]. Angewandte chemie international edition, 2011, 50(16): 3696-3700. DOI: 10.1002/anie.201008277.
[22] WU Y N, ZHANG B R, LI F T, et al. Electrospun fibrous mats as a skeleton for fabricating hierarchically structured materials as sorbents for Cu2+[J]. Journal of materials chemistry, 2012, 22(11): 5089-5097. DOI: 10.1039/c2jm13874c.
[23] WU H B, XIA B Y, YU L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature communications, 2015, 6: 6512. DOI: 10.1038/ncomms7512.
[24] YIN P Q, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte chemie international edition, 2016, 55(36): 10800-10805. DOI: 10.1002/anie.201604802.
[25] GUAN B Y, KUSHIMA A, YU L, et al. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors[J]. Advanced materials, 2017, 29(17): 1605902. DOI: 10.1002/adma.201605902.
[26] HU H, ZHANG J T, GUAN B Y, et al. Unusual Formation of CoSe@carbon Nanoboxes, which have an inhomogeneous shell, for efficient lithium storage[J]. Angewandte chemie international edition, 2016, 55(33): 9514-9518. DOI: 10.1002/anie.201603852.
[27] GUAN B Y, YU L, WANG X, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced materials, 2017, 29(6): 1605051. DOI: 10.1002/adma.201605051.
[28] ZHANG J T, HU H, LI Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte chemie international edition, 2016, 55(12): 3982-3986. DOI: 10.1002/anie.201511632.
[29] TANG J, TORAD N L, SALUNKHE R R, et al. Towards vaporized molecular discrimination: a quartz crystal microbalance (QCM) sensor system using cobalt-containing mesoporous graphitic carbon[J]. Chemistry-an Asian journal, 2014, 9(11): 3238-3244. DOI: 10.1002/asia.201402629.
[30] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. DOI:10.1038/35035045.
[31] ARICÒ A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials, 2005, 4(5): 366-377. DOI: 10.1038/nmat1368.
[32] WANG C, XIE Z G, DEKRAFFT K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. Journal of the American chemical society, 2011, 133(34): 13445-13454. DOI: 10.1021/ja203564w.
[33] GUAN B Y, YU X Y, WU H B, et al. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion[J]. Advanced materials, 2017, 29(47): 1703614. DOI: 10.1002/adma.201703614.
[34] REDDY M V, SUBBA RAO G V, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical reviews, 2013, 113(7): 5364-5457 DOI: 10.1021/cr3001884.
[35] JIANG J, LI Y Y, LIU J P, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced materials, 2012, 24(38): 5166-5180. DOI: 10.1002/adma.201202146.
[36] FEREY G, MILLANGE F, MORCRETTE M, et al. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties[J]. Angewandte Chemie International Edition, 2007, 46(18): 3259-3263. DOI: 10.1002/anie.200605163.
[37] PENG Z, YI X H, LIU Z X, et al. Triphenylamine-based metal-organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability[J]. ACS applied materials & interfaces, 2016, 8(23): 14578-14585. DOI: 10.1021/acsami.6b03418.
[38] MAITI S, PRAMANIK A, MANJU U, et al. Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance[J]. ACS applied materials & interfaces, 2015, 7(30): 16357-16363. DOI: 10.1021/acsami.5b03414.
[39] AN T, WANG Y H, TANG J, et al. A flexible ligand- based wavy layered metal-organic framework for lithium- ion storage[J]. Journal of colloid and interface science, 2015, 445: 320-325. DOI: 10.1016/j.jcis.2015.01.012.
[40] HAN X Y, YI F, SUN T L, et al. Synthesis and electrochemical performance of Li and Ni 1,4,5,8-naphthalenetetracarboxylates as anodes for Li-ion batteries[J]. Electrochemistry communications, 2012, 25: 136-139. DOI: 10.1016/j.elecom.2012.09.014.
[41] 连江平, 李倩倩, 温巧娥, 等. 锂离子电池负极材料钛酸锂的研究进展[J]. 新能源进展, 2016, 4(4): 297-304. DOI: 10.3969/j.issn.2095-560X.2016.04.006.
[42] CAO X H, ZHENG B, RUI X H, et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors[J]. Angewandte chemie international edition, 2014, 53(5): 1404-1409. DOI: 10.1002/anie.201308013.
[43] XU X D, CAO R G, JEONG S Y, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries[J]. Nano letters, 2012, 12(9): 4988-4991. DOI: 10.1021/nl302618s.
[44] BANERJEE A, SINGH U, ARAVINDAN V, et al. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries[J]. Nano energy, 2013, 2(6): 1158-1163. DOI: 10.1016/j.nanoen.2013.04.008.
[45] KANETI Y V, TANG J, SALUNKHE R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Advanced materials, 2017, 29(12): 1604898. DOI: 10.1002/adma.201604898.
[46] HU L, YAN N, CHEN Q W, et al. Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage[J]. Chemistry-a European journal, 2012, 18(29): 8971-8977. DOI: 10.1002/chem.201200770.
[47] ZHANG L, WU H B, MADHAVI S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American chemical society, 2012, 134(42): 17388-17391. DOI: 10.1021/ja307475c.
[48] ZHANG L, WU H B, DAVID LOU X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity[J]. Journal of the American chemical society, 2013, 135(29): 10664-10672. DOI: 10.1021/ja401727n.
[49] ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium- ion and lithium-ion intercalation materials[J]. Energy & environmental science, 2011, 4(9): 3680-3688. DOI: 10.1039/c1ee01782a.
[50] BENNETT T D, GOODWIN A L, DOVE M T, et al. Structure and properties of an amorphous metal-organic framework[J]. Physical review letters, 2010, 104(11): 115503. DOI: 10.1103/PhysRevLett.104.115503.
[51] WANG B, WU H B, ZHANG L, et al. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks[J]. Angewandte chemie international edition, 2013, 52(15): 4165-4168. DOI: 10.1002/anie.201300190.
[52] OKUBO M, LI C H, TALHAM D R. High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues[J]. Chemical communications, 2014, 50(11): 1353-1355. DOI: 10.1039/c3cc47607c.
[53] JU M J, JEON I Y, LIM K, et al. Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells[J]. Energy & environmental science, 2014, 7(3): 1044-1052. DOI: 10.1039/c3ee43732a.
[54] YUE Y F, BINDER A J, GUO B K, et al. Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications[J]. Angewandte chemieinternational edition, 2014, 126(12): 3198-3201. DOI: 10.1002/ange.201310679.
[55] LU Y H, WANG L, CHENG J G, et al. Prussian blue: a new framework of electrode materials for sodium batteries[J]. Chemical communications, 2012, 48(52): 6544-6546. DOI: 10.1039/c2cc31777j.
[56] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano letters, 2011, 11(12): 5421-5425. DOI: 10.1021/nl203193q.
[57] WU X Y, SUN M Y, GUO S M, et al. Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries[J]. ChemNanoMat, 2015, 1(3): 188-193. DOI: 10.1002/cnma.201500021.
[58] WANG X F, KURONO R, NISHIMURA S I, et al. Iron-oxalato framework with one-dimensional open channels for electrochemical sodium-ion intercalation[J]. Chemistry – a European journal, 2015, 21(3): 1096-1101. DOI: 10.1002/chem.201404929.
[59] ZHANG N, HAN X P, LIU Y C, et al. 3D Porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced energy materials, 2015, 5(5): 1401123. DOI: 10.1002/aenm.201401123.
[60] JIAN Z L, LIU P, LI F J, et al. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries[J]. Journal of materials chemistry A, 2014, 2(34): 13805-13809. DOI: 10.1039/c4ta02516d.
[61] LU Y Y, ZHANG N, ZHAO Q, et al. Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries[J]. Nanoscale, 2015, 7(6): 2770-2776. DOI: 10.1039/c4nr06432a.
[62] ZOU F, CHEN Y M, LIU K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/Graphene composites for lithium and sodium storage[J]. ACS nano, 2016, 10(1): 377-386. DOI: 10.1021/acsnano.5b05041.
[63] GE X L, LI Z Q, YIN L W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano energy, 2017, 32: 117-124. DOI: 10.1016/j.nanoen.2016.11.055.