Welcome to visit Advances in New and Renewable Energy!

Metal-Organic Frameworks and Derivative Metal Oxides for Advanced Lithium and Sodium Ion Batteries

  • XU Yuan ,
  • ZHU Kong-jun ,
  • LIU Peng-cheng ,
  • WANG Jing ,
  • YAN Kang ,
  • LIU Jing-song
Expand
  • 1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 
    3. College of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Received date: 2018-11-29

  Revised date: 2018-12-05

  Online published: 2019-02-27

Abstract

High energy density lithium and sodium ion batteries have attracted much attention because they are crucial to the power supply of future portable electronic devices, electric automobiles and large-scale energy storage power plants. At present, the research development of commercial lithium-ion batteries and sodium-ion batteries are facing some technical bottlenecks, such as low energy density and weak charging and discharging capacity, which unable to meet market demand. Metal organic frameworks (MOFs) and their derived metal oxides, which possessing unique structure and high specific surface area, are considered as new electrode materials for electrochemical energy storage devices to meet the requirements of high energy lithium and sodium ion batteries. In this paper, the recent progress of metal-organic frameworks and their derived metal oxides work as electrode materials for lithium and sodium ion batteries was reviewed. Meanwhile, the challenges of MOFs and their derived metal oxides in future applications and possible development tendency were pointed out.

Cite this article

XU Yuan , ZHU Kong-jun , LIU Peng-cheng , WANG Jing , YAN Kang , LIU Jing-song . Metal-Organic Frameworks and Derivative Metal Oxides for Advanced Lithium and Sodium Ion Batteries[J]. Advances in New and Renewable Energy, 2019 , 7(1) : 13 -22 . DOI: 10.3969/j.issn.2095-560X.2019.01.002

References

[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a.
[2] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. DOI: 10.1038/35104644.
[3] 杜江, 张正富, 彭金辉. 动力锂离子电池正极材料磷酸铁锂的研究进展[J]. 新能源进展, 2013, 1(3): 263-268. DOI: 10.3969/j.issn.2095-560X.2013.03.010.
[4] 李丽叶, 刘鹏程, 朱孔军. 静电纺丝法制备硅碳纳米纤维及其在锂钠离子电池中的应用[J]. 新能源进展, 2016, 4(6): 443-454. DOI: 10.3969/j.issn.2095-560X. 2016.06.004.
[5] WANG L, LU Y H, LIU J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angewandte chemie international edition, 2013, 52(7): 1964-1967. DOI: 10.1002/anie.201206854.
[6] YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American chemical society, 1995, 117(41): 10401-10402. DOI: 10.1021/ja00146a033.
[7] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. DOI: 10.1126/science.1230444.
[8] GUAN B Y, YU X Y, WU H B, et al. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion[J]. Advanced Materials, 2017,29(47): 1703614. DOI: 10.1002/adma.201703614.
[9] XIA W, MAHMOOD A, ZOU R, et al. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2015,8(7): 1837-1866. DOI: 10.1039/c5ee00762c.
[10] XU G Y, NIE P, DOU H, et al. Exploring metal organic frameworks for energy storage in batteries and supercapacitors[J]. Materials today, 2017, 20(4): 191-209. DOI: 10.1016/j.mattod.2016.10.003.
[11] AVCI C, ARIÑEZ-SORIANO J, CARNÉ‐SÁNCHEZ A, et al. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals[J]. Angewandte chemie international edition, 2015, 54(48): 14417-14421. DOI: 10.1002/anie.201507588.
[12] HAN L, YU X Y, DAVID LOU X W. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-Mixed Oxide for enhanced oxygen evolution[J]. Advanced materials, 2016, 28(23): 4601-4605. DOI: 10.1002/adma.201506315.
[13] ZHANG Z C, CHEN Y F, XU X B, et al. Well-defined metal-organic framework hollow nanocages[J]. Angewandte chemie international edition, 2014, 53(2): 429-433. DOI: 10.1002/anie.201308589.
[14] WAN J Y, KAPLAN A F, ZHENG J, et al. Two dimensional silicon nanowalls for lithium ion batteries[J]. Journal of materials chemistry A, 2014, 2(17): 6051-6057. DOI: 10.1039/c3ta13546b.
[15] AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. Journal of the American chemical society, 2012, 134(34): 13926-13929. DOI: 10.1021/ja3043905.
[16] ZHU Q L, LI J, XU Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance[J]. Journal of the American chemical society, 2013, 135(28): 10210-10213. DOI: 10.1021/ja403330m.
[17] LU G, LI S Z, GUO Z, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature chemistry, 2012, 4(4): 310-316. DOI: 10.1038/nchem.1272.
[18] KUO C H, TANG Y, CHOU L Y, et al. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J]. Journal of the American chemical society, 2012, 134(35): 14345-14348. DOI: 10.1021/ja306869j.
[19] PANG M L, CAIRNS A J, LIU Y L, et al. Highly monodisperse MIII-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies[J]. Journal of the American chemical society, 2012, 134(32): 13176-13179. DOI: 10.1021/ja3049282.
[20] GUAN B Y, YU L, LI J, et al. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties[J]. Science advances, 2016, 2(3): e1501554. DOI: 10.1126/sciadv.1501554.
[21] LIU D M, HUXFORD R C, LIN W B. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging[J]. Angewandte chemie international edition, 2011, 50(16): 3696-3700. DOI: 10.1002/anie.201008277.
[22] WU Y N, ZHANG B R, LI F T, et al. Electrospun fibrous mats as a skeleton for fabricating hierarchically structured materials as sorbents for Cu2+[J]. Journal of materials chemistry, 2012, 22(11): 5089-5097. DOI: 10.1039/c2jm13874c.
[23] WU H B, XIA B Y, YU L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature communications, 2015, 6: 6512. DOI: 10.1038/ncomms7512.
[24] YIN P Q, YAO T, WU Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte chemie international edition, 2016, 55(36): 10800-10805. DOI: 10.1002/anie.201604802.
[25] GUAN B Y, KUSHIMA A, YU L, et al. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors[J]. Advanced materials, 2017, 29(17): 1605902. DOI: 10.1002/adma.201605902.
[26] HU H, ZHANG J T, GUAN B Y, et al. Unusual Formation of CoSe@carbon Nanoboxes, which have an inhomogeneous shell, for efficient lithium storage[J]. Angewandte chemie international edition, 2016, 55(33): 9514-9518. DOI: 10.1002/anie.201603852.
[27] GUAN B Y, YU L, WANG X, et al. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced materials, 2017, 29(6): 1605051. DOI: 10.1002/adma.201605051.
[28] ZHANG J T, HU H, LI Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angewandte chemie international edition, 2016, 55(12): 3982-3986. DOI: 10.1002/anie.201511632.
[29] TANG J, TORAD N L, SALUNKHE R R, et al. Towards vaporized molecular discrimination: a quartz crystal microbalance (QCM) sensor system using cobalt-containing mesoporous graphitic carbon[J]. Chemistry-an Asian journal, 2014, 9(11): 3238-3244. DOI: 10.1002/asia.201402629.
[30] POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. DOI:10.1038/35035045.
[31] ARICÒ A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials, 2005, 4(5): 366-377. DOI: 10.1038/nmat1368.
[32] WANG C, XIE Z G, DEKRAFFT K E, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. Journal of the American chemical society, 2011, 133(34): 13445-13454. DOI: 10.1021/ja203564w.
[33] GUAN B Y, YU X Y, WU H B, et al. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion[J]. Advanced materials, 2017, 29(47): 1703614. DOI: 10.1002/adma.201703614.
[34] REDDY M V, SUBBA RAO G V, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical reviews, 2013, 113(7): 5364-5457 DOI: 10.1021/cr3001884.
[35] JIANG J, LI Y Y, LIU J P, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced materials, 2012, 24(38): 5166-5180. DOI: 10.1002/adma.201202146.
[36] FEREY G, MILLANGE F, MORCRETTE M, et al. Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties[J]. Angewandte Chemie International Edition, 2007, 46(18): 3259-3263. DOI: 10.1002/anie.200605163.
[37] PENG Z, YI X H, LIU Z X, et al. Triphenylamine-based metal-organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability[J]. ACS applied materials & interfaces, 2016, 8(23): 14578-14585. DOI: 10.1021/acsami.6b03418.
[38] MAITI S, PRAMANIK A, MANJU U, et al. Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance[J]. ACS applied materials & interfaces, 2015, 7(30): 16357-16363. DOI: 10.1021/acsami.5b03414.
[39] AN T, WANG Y H, TANG J, et al. A flexible ligand- based wavy layered metal-organic framework for lithium- ion storage[J]. Journal of colloid and interface science, 2015, 445: 320-325. DOI: 10.1016/j.jcis.2015.01.012.
[40] HAN X Y, YI F, SUN T L, et al. Synthesis and electrochemical performance of Li and Ni 1,4,5,8-naphthalenetetracarboxylates as anodes for Li-ion batteries[J]. Electrochemistry communications, 2012, 25: 136-139. DOI: 10.1016/j.elecom.2012.09.014.
[41] 连江平, 李倩倩, 温巧娥, 等. 锂离子电池负极材料钛酸锂的研究进展[J]. 新能源进展, 2016, 4(4): 297-304. DOI: 10.3969/j.issn.2095-560X.2016.04.006.
[42] CAO X H, ZHENG B, RUI X H, et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors[J]. Angewandte chemie international edition, 2014, 53(5): 1404-1409. DOI: 10.1002/anie.201308013.
[43] XU X D, CAO R G, JEONG S Y, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries[J]. Nano letters, 2012, 12(9): 4988-4991. DOI: 10.1021/nl302618s.
[44] BANERJEE A, SINGH U, ARAVINDAN V, et al. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries[J]. Nano energy, 2013, 2(6): 1158-1163. DOI: 10.1016/j.nanoen.2013.04.008.
[45] KANETI Y V, TANG J, SALUNKHE R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J]. Advanced materials, 2017, 29(12): 1604898. DOI: 10.1002/adma.201604898.
[46] HU L, YAN N, CHEN Q W, et al. Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage[J]. Chemistry-a European journal, 2012, 18(29): 8971-8977. DOI: 10.1002/chem.201200770.
[47] ZHANG L, WU H B, MADHAVI S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American chemical society, 2012, 134(42): 17388-17391. DOI: 10.1021/ja307475c.
[48] ZHANG L, WU H B, DAVID LOU X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity[J]. Journal of the American chemical society, 2013, 135(29): 10664-10672. DOI: 10.1021/ja401727n.
[49] ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium- ion and lithium-ion intercalation materials[J]. Energy & environmental science, 2011, 4(9): 3680-3688. DOI: 10.1039/c1ee01782a.
[50] BENNETT T D, GOODWIN A L, DOVE M T, et al. Structure and properties of an amorphous metal-organic framework[J]. Physical review letters, 2010, 104(11): 115503. DOI: 10.1103/PhysRevLett.104.115503.
[51] WANG B, WU H B, ZHANG L, et al. Self-supported construction of uniform Fe3O4 hollow microspheres from nanoplate building blocks[J]. Angewandte chemie international edition, 2013, 52(15): 4165-4168. DOI: 10.1002/anie.201300190.
[52] OKUBO M, LI C H, TALHAM D R. High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues[J]. Chemical communications, 2014, 50(11): 1353-1355. DOI: 10.1039/c3cc47607c.
[53] JU M J, JEON I Y, LIM K, et al. Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells[J]. Energy & environmental science, 2014, 7(3): 1044-1052. DOI: 10.1039/c3ee43732a.
[54] YUE Y F, BINDER A J, GUO B K, et al. Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications[J]. Angewandte chemieinternational edition, 2014, 126(12): 3198-3201. DOI: 10.1002/ange.201310679.
[55] LU Y H, WANG L, CHENG J G, et al. Prussian blue: a new framework of electrode materials for sodium batteries[J]. Chemical communications, 2012, 48(52): 6544-6546. DOI: 10.1039/c2cc31777j.
[56] WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano letters, 2011, 11(12): 5421-5425. DOI: 10.1021/nl203193q.
[57] WU X Y, SUN M Y, GUO S M, et al. Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries[J]. ChemNanoMat, 2015, 1(3): 188-193. DOI: 10.1002/cnma.201500021.
[58] WANG X F, KURONO R, NISHIMURA S I, et al. Iron-oxalato framework with one-dimensional open channels for electrochemical sodium-ion intercalation[J]. Chemistry – a European journal, 2015, 21(3): 1096-1101. DOI: 10.1002/chem.201404929.
[59] ZHANG N, HAN X P, LIU Y C, et al. 3D Porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced energy materials, 2015, 5(5): 1401123. DOI: 10.1002/aenm.201401123.
[60] JIAN Z L, LIU P, LI F J, et al. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries[J]. Journal of materials chemistry A, 2014, 2(34): 13805-13809. DOI: 10.1039/c4ta02516d.
[61] LU Y Y, ZHANG N, ZHAO Q, et al. Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries[J]. Nanoscale, 2015, 7(6): 2770-2776. DOI: 10.1039/c4nr06432a.
[62] ZOU F, CHEN Y M, LIU K W, et al. Metal organic frameworks derived hierarchical hollow NiO/Ni/Graphene composites for lithium and sodium storage[J]. ACS nano, 2016, 10(1): 377-386. DOI: 10.1021/acsnano.5b05041.
[63] GE X L, LI Z Q, YIN L W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano energy, 2017, 32: 117-124. DOI: 10.1016/j.nanoen.2016.11.055.
Outlines

/