[1] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11.
[2] 甘华阳, 王家生, 胡高韦. 海洋沉积物中的天然气水合物与海底滑坡[J]. 防灾减灾工程学报, 2004, 24(2): 177-181. DOI: 10.3969/j.issn.1672-2132.2004.02.010.
[3] 公彬, 蒋宇静, 王刚, 等. 南海天然气水合物开采海底沉降预测[J]. 山东科技大学学报(自然科学版), 2015, 34(5): 61-68. DOI: 10.3969/j.issn.1672-3767.2015.05.010.
[4] 王锐. 甲烷水合物及其沉积物的蠕变特性研究[D]. 大连: 大连理工大学, 2012.
[5] 李洋辉, 宋永臣, 刘卫国. 天然气水合物三轴压缩试验研究进展[J]. 天然气勘探与开发, 2010, 33(2): 51-55. DOI: 10.3969/j.issn.1673-3177.2010.02.014.
[6] 李彦龙, 刘昌岭, 刘乐乐, 等. 水合物沉积物三轴试验存在的关键问题分析[J]. 新能源进展, 2016, 4(4): 279-285.
[7] WINTERS W J, PECHER I A, WAITE W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American mineralogist, 2004, 89(8/9): 1221-1227. DOI: 10.2138/am-2004-8-909.
[8] PRIEST J, SULTANIYA A, CLAYTON C. Impact of hydrate formation and dissociation on the stiffness of a sand[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, UK, 2011.
[9] 刘艳军, 董孟阳, 江磊磊, 等. 天然气水合物沉积物颗粒影响实验[J]. 储能科学与技术, 2017, 6(4): 789-798. DOI: 10.12028/j.issn.2095-4239.2017.0093.
[10] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240.
[11] 孙晓杰, 程远方, 李令东, 等. 天然气水合物岩样三轴力学试验研究[J]. 石油钻探技术, 2012, 40(4): 52-57. DOI:10.3969/j.issn.1001-0890.2012.04.011.
[12] 李令东, 程远方, 孙晓杰, 等. 水合物沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 2012, 36(4): 97-101. DOI: 10.3969/j.issn. 1673-5005.2012.04.018.
[13] LUO T T, SONG Y C, ZHU Y M, et al. Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea[J]. Marine and petroleum geology, 2016, 77: 507-514. DOI: 10.1016/j.marpetgeo.2016.06.019.
[14] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Shear strength of methane hydrate bearing sand and its deformation during dissociation of methane hydrate[C]//Fourth International Symposium on Deformation Characteristics of Geomaterials. Atlanta, Ga, 2008.
[15] MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers, 2005.
[16] MASUI A, MIYAZAKI K, HANEDA H, et al. Mechanical properties of natural gas hydrate bearing sediments retrieved from eastern Nankai trough[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2008. DOI: 10.4043/19277-MS.
[17] 孙中明. 沉积物中水合物饱和度及其相应力学特性的实验研究[D]. 青岛: 中国石油大学(华东), 2013.
[18] 王淑云, 罗大双, 张旭辉, 等. 含水合物黏土的力学性质试验研究[J]. 实验力学, 2018, 33(2): 245-252. DOI: 10.7520/1001-4888-16-220.
[19] KAJIYAMA S, WU Y, HYODO M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles[J]. Journal of natural gas science and engineering, 2017, 45: 96-107. DOI: 10.1016/j.jngse.2017.05.008.
[20] MIYAZAKI K, TENMA N, YAMAGUCHI T. Relationship between creep property and loading-rate dependence of strength of artificial methane-hydrate- bearing toyoura sand under triaxial compression[J]. Energies, 2017, 10(10): 1466. DOI: 10.3390/en10101466.
[21] HYODO M, WU Y, NAKASHIMA K, et al. Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2017, 122(10): 7511-7524. DOI: 10.1002/2017JB014154.
[22] LIU Z C, DAI S, NING F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophysical research letters, 2018, 45(2): 715-723. DOI: 10.1002/2017GL076374.
[23] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. DOI: 10.3969/j.issn.1000-7598.2010.10.007.
[24] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Shear behaviour of methane hydrate-bearing sand[C]//Proceedings of 17th International Offshore and Polar Engineering Conference. Lisbon, Portugal, 2007.
[25] SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of natural gas chemistry, 2010, 19(3): 246-250. DOI: 10.1016/S1003-9953(09)60073-6.
[26] 张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(S1): 303-308.
[27] 刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400.
[28] 关进安, 卢静生, 梁德青, 等. 高压下南海神狐水合物区域海底沉积地层三轴力学性质初步测试[J]. 新能源进展, 2017, 5(1): 40-46. DOI: 10.3969/j.issn.2095-560X.2017.01.006.
[29] 李洋辉, 宋永臣, 于锋, 等. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640.
[30] 刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572.
[31] 李洋辉, 宋永臣, 刘卫国, 等. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 2012, 35(1): 50-53. DOI: 10.3969/j.issn.1673-3177.2012.01.011.
[32] HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and petroleum geology, 2014, 51: 52-62. DOI: 10.1016/j.marpetgeo.2013.11.015.
[33] KIMOTO S, OKA F, FUSHITA T, et al. A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation[J]. Computers and geotechnics, 2007, 34(4): 216-228. DOI: 10.1016/j.compgeo.2007.02.006.
[34] Aoki K, Masui A, Haneda H, et al. Compaction behavior of Toyoura sand during methane hydrate dissociation[M]. Cupertino: International Society Offshore& Polar Engineers, 2007: 48-52.
[35] LI D L, WU Q, WANG Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7): 1819. DOI: 10.3390/en11071819.
[36] LI Y H, LIU W G, ZHU Y M, et al. Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods[J]. Applied energy, 2016, 162: 1627-1632. DOI: 10.1016/j.apenergy.2015.04.065.
[37] ECKER C. Seismic characterization of methane hydrate structures[D]. Stanford US: Stanford University, 2001.
[38] HELGERUD M B, DVORKIN J, NUR A, et al. Elastic- wave velocity in marine sediments with gas hydrates: Effective medium modeling[J]. Geophysical research letters, 1999, 26(13): 2021-2024. DOI: 10.1029/1999GL900421.
[39] BERGE L I, JACOBSEN K A, SOLSTAD A. Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration[J]. Journal of geophysical research: solid earth, 1999, 104(B7): 15415-15424. DOI: 10.1029/1999JB900098.
[40] YUN T S, FRANCISCA F M, SANTAMARINA J C, et al. Compressional and shear wave velocities in uncemented sediment containing gas hydrate[J]. Geophysical research letters, 2005, 32(10): L10609. DOI: 10.1029/2005GL022607.
[41] UCHIDA S. Numerical investigation of geomechanical behaviour of hydrate-bearing sediments[D]. Cambridge, UK: University of Cambridge, 2013.
[42] HYODO M, LI Y H, YONEDA J, et al. Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2013, 118(10): 5185-5194. DOI: 10.1002/2013JB010233.
[43] SULTAN N, GARZIGLIA S. Geomechanical constitutive modelling of gas-hydrate-bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, 2011.
[44] KLAR A, SOGA K, NG M Y A. Coupled deformation- flow analysis for methane hydrate extraction[J]. Géotechnique, 2010, 60(10): 765-776. DOI: 10.1680/geot.9.P.079-3799.
[45] MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5(10): 4057-4075. DOI: 10.3390/en5104057.
[46] PINKERT S, GROZIC J L H, PRIEST J A. Strain-Softening Model for Hydrate-Bearing Sands[J]. International journal of geomechanics, 2015, 15(6): 04015007. DOI: 10.1061/(ASCE)GM.1943-5622.0000477.
[47] YAN C L, CHENG Y F, LI M L, et al. Mechanical experiments and constitutive model of natural gas hydrate reservoirs[J]. International journal of hydrogen energy, 2017, 42(31): 19810-19818. DOI: 10.1016/j.ijhydene.2017.06.135.
[48] SONG Y C, ZHU Y M, LIU W G, et al. The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of petroleum science and engineering, 2016, 147: 77-86. DOI: 10.1016/j.petrol.2016.05.009.
[49] UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of geophysical research: solid earth, 2012, 117(B3): B03209. DOI: 10.1029/2011JB008661.
[50] UCHIDA S, XIE X G, LEUNG Y F. Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2016, 121(8): 5580-5595. DOI: 10.1002/2016JB012967.
[51] HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International journal of solids and structures, 1989, 25(8): 917-945. DOI: 10.1016/0020-7683(89)90038-3.
[52] 吴二林, 韦昌富, 魏厚振, 等. 含天然气水合物沉积物损伤统计本构模型[J]. 岩土力学, 2013, 34(1): 60-65.
[53] 杨期君, 赵春风. 含气水合物沉积物弹塑性损伤本构模型探讨[J]. 岩土力学, 2014, 35(4): 991-997.
[54] 颜荣涛, 李扬, 杨德欢, 等. 含水合物砂土力学特性及本构模型[J]. 地下空间与工程学报, 2017, 13(4): 923-930.
[55] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10): 1273-1279. DOI: 10.7623/syxb201610007.
[56] 颜荣涛, 梁维云, 韦昌富, 等. 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38(1): 10-18. DOI: 10.16285/j.rsm.2017.01.002.
[57] 张峰, 刘丽华, 吴能友, 等. 含天然气水合物沉积介质力学本构关系及数值模拟研究现状[J]. 新能源进展, 2017, 5(6): 443-449. DOI: 10.3969/j.issn.2095-560X.2017.06.005.