Welcome to visit Advances in New and Renewable Energy!

Research Progress in Mechanical Properties of Gas Hydrate Reservoirs

  • LI Dong-liang ,
  • WANG Zhe ,
  • WU Qi ,
  • LU Jing-sheng ,
  • LIANG De-qing
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;                                                               
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;            
    4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China;                                  
    5. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu, China;                                              
    6. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-10-08

  Revised date: 2018-10-22

  Online published: 2019-02-27

Abstract

Hydrates in nature generally occur in unconsolidated sediments in shallow seabed of deep water and in rock fissures or pores in land permafrost. The decomposition of hydrate will lead to changes in formation cementation strength, porosity and geological structure, which will lead to geological hazards and seriously threaten the safe exploitation of hydrate resources. On the basis of a large number of current researches for the methods of the hydrate sample preparation and tri-axial mechanical testing and the constitutive models, this paper systematically analyzed the main factors that affect the mechanical properties of natural gas hydrate-bearing sediments and introduced the development trend of the constitutive models, and combed out the consensus and the existing problems, and puts forward some suggestions. This paper also suggested the future work of the mechanical strength test of hydrate sediments, the development of constitutive model and the study of reservoir stability and offered the reference for the research of natural gas hydrates in our country.

Cite this article

LI Dong-liang , WANG Zhe , WU Qi , LU Jing-sheng , LIANG De-qing . Research Progress in Mechanical Properties of Gas Hydrate Reservoirs[J]. Advances in New and Renewable Energy, 2019 , 7(1) : 40 -49 . DOI: 10.3969/j.issn.2095-560X.2019.01.005

References

[1] 吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11.
[2] 甘华阳, 王家生, 胡高韦. 海洋沉积物中的天然气水合物与海底滑坡[J]. 防灾减灾工程学报, 2004, 24(2): 177-181. DOI: 10.3969/j.issn.1672-2132.2004.02.010.
[3] 公彬, 蒋宇静, 王刚, 等. 南海天然气水合物开采海底沉降预测[J]. 山东科技大学学报(自然科学版), 2015, 34(5): 61-68. DOI: 10.3969/j.issn.1672-3767.2015.05.010.
[4] 王锐. 甲烷水合物及其沉积物的蠕变特性研究[D]. 大连: 大连理工大学, 2012.
[5] 李洋辉, 宋永臣, 刘卫国. 天然气水合物三轴压缩试验研究进展[J]. 天然气勘探与开发, 2010, 33(2): 51-55. DOI: 10.3969/j.issn.1673-3177.2010.02.014.
[6] 李彦龙, 刘昌岭, 刘乐乐, 等. 水合物沉积物三轴试验存在的关键问题分析[J]. 新能源进展, 2016, 4(4): 279-285.
[7] WINTERS W J, PECHER I A, WAITE W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American mineralogist, 2004, 89(8/9): 1221-1227. DOI: 10.2138/am-2004-8-909.
[8] PRIEST J, SULTANIYA A, CLAYTON C. Impact of hydrate formation and dissociation on the stiffness of a sand[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, UK, 2011.
[9] 刘艳军, 董孟阳, 江磊磊, 等. 天然气水合物沉积物颗粒影响实验[J]. 储能科学与技术, 2017, 6(4): 789-798. DOI: 10.12028/j.issn.2095-4239.2017.0093.
[10] 颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240.
[11] 孙晓杰, 程远方, 李令东, 等. 天然气水合物岩样三轴力学试验研究[J]. 石油钻探技术, 2012, 40(4): 52-57. DOI:10.3969/j.issn.1001-0890.2012.04.011.
[12] 李令东, 程远方, 孙晓杰, 等. 水合物沉积物试验岩样制备及力学性质研究[J]. 中国石油大学学报(自然科学版), 2012, 36(4): 97-101. DOI: 10.3969/j.issn. 1673-5005.2012.04.018.
[13] LUO T T, SONG Y C, ZHU Y M, et al. Triaxial experiments on the mechanical properties of hydrate-bearing marine sediments of South China Sea[J]. Marine and petroleum geology, 2016, 77: 507-514. DOI: 10.1016/j.marpetgeo.2016.06.019.
[14] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Shear strength of methane hydrate bearing sand and its deformation during dissociation of methane hydrate[C]//Fourth International Symposium on Deformation Characteristics of Geomaterials. Atlanta, Ga, 2008.
[15] MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: International Society of Offshore and Polar Engineers, 2005.
[16] MASUI A, MIYAZAKI K, HANEDA H, et al. Mechanical properties of natural gas hydrate bearing sediments retrieved from eastern Nankai trough[C]//Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2008. DOI: 10.4043/19277-MS.
[17] 孙中明. 沉积物中水合物饱和度及其相应力学特性的实验研究[D]. 青岛: 中国石油大学(华东), 2013.
[18] 王淑云, 罗大双, 张旭辉, 等. 含水合物黏土的力学性质试验研究[J]. 实验力学, 2018, 33(2): 245-252. DOI: 10.7520/1001-4888-16-220.
[19] KAJIYAMA S, WU Y, HYODO M, et al. Experimental investigation on the mechanical properties of methane hydrate-bearing sand formed with rounded particles[J]. Journal of natural gas science and engineering, 2017, 45: 96-107. DOI: 10.1016/j.jngse.2017.05.008.
[20] MIYAZAKI K, TENMA N, YAMAGUCHI T. Relationship between creep property and loading-rate dependence of strength of artificial methane-hydrate- bearing toyoura sand under triaxial compression[J]. Energies, 2017, 10(10): 1466. DOI: 10.3390/en10101466.
[21] HYODO M, WU Y, NAKASHIMA K, et al. Influence of fines content on the mechanical behavior of methane hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2017, 122(10): 7511-7524. DOI: 10.1002/2017JB014154.
[22] LIU Z C, DAI S, NING F L, et al. Strength estimation for hydrate-bearing sediments from direct shear tests of hydrate-bearing sand and silt[J]. Geophysical research letters, 2018, 45(2): 715-723. DOI: 10.1002/2017GL076374.
[23] 张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. DOI: 10.3969/j.issn.1000-7598.2010.10.007.
[24] HYODO M, NAKATA Y, YOSHIMOTO N, et al. Shear behaviour of methane hydrate-bearing sand[C]//Proceedings of 17th International Offshore and Polar Engineering Conference. Lisbon, Portugal, 2007.
[25] SONG Y C, YU F, LI Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression[J]. Journal of natural gas chemistry, 2010, 19(3): 246-250. DOI: 10.1016/S1003-9953(09)60073-6.
[26] 张旭辉, 鲁晓兵, 王淑云, 等. 四氢呋喃水合物沉积物静动力学性质试验研究[J]. 岩土力学, 2011, 32(S1): 303-308.
[27] 刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400.
[28] 关进安, 卢静生, 梁德青, 等. 高压下南海神狐水合物区域海底沉积地层三轴力学性质初步测试[J]. 新能源进展, 2017, 5(1): 40-46. DOI: 10.3969/j.issn.2095-560X.2017.01.006.
[29] 李洋辉, 宋永臣, 于锋, 等. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640.
[30] 刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572.
[31] 李洋辉, 宋永臣, 刘卫国, 等. 温度和应变速率对水合物沉积物强度影响试验研究[J]. 天然气勘探与开发, 2012, 35(1): 50-53. DOI: 10.3969/j.issn.1673-3177.2012.01.011.
[32] HYODO M, LI Y H, YONEDA J, et al. Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments[J]. Marine and petroleum geology, 2014, 51: 52-62. DOI: 10.1016/j.marpetgeo.2013.11.015.
[33] KIMOTO S, OKA F, FUSHITA T, et al. A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation[J]. Computers and geotechnics, 2007, 34(4): 216-228. DOI: 10.1016/j.compgeo.2007.02.006.
[34] Aoki K, Masui A, Haneda H, et al. Compaction behavior of Toyoura sand during methane hydrate dissociation[M]. Cupertino: International Society Offshore& Polar Engineers, 2007: 48-52.
[35] LI D L, WU Q, WANG Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7): 1819. DOI: 10.3390/en11071819.
[36] LI Y H, LIU W G, ZHU Y M, et al. Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods[J]. Applied energy, 2016, 162: 1627-1632. DOI: 10.1016/j.apenergy.2015.04.065.
[37] ECKER C. Seismic characterization of methane hydrate structures[D]. Stanford US: Stanford University, 2001.
[38] HELGERUD M B, DVORKIN J, NUR A, et al. Elastic- wave velocity in marine sediments with gas hydrates: Effective medium modeling[J]. Geophysical research letters, 1999, 26(13): 2021-2024. DOI: 10.1029/1999GL900421.
[39] BERGE L I, JACOBSEN K A, SOLSTAD A. Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration[J]. Journal of geophysical research: solid earth, 1999, 104(B7): 15415-15424. DOI: 10.1029/1999JB900098.
[40] YUN T S, FRANCISCA F M, SANTAMARINA J C, et al. Compressional and shear wave velocities in uncemented sediment containing gas hydrate[J]. Geophysical research letters, 2005, 32(10): L10609. DOI: 10.1029/2005GL022607.
[41] UCHIDA S. Numerical investigation of geomechanical behaviour of hydrate-bearing sediments[D]. Cambridge, UK: University of Cambridge, 2013.
[42] HYODO M, LI Y H, YONEDA J, et al. Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2013, 118(10): 5185-5194. DOI: 10.1002/2013JB010233.
[43] SULTAN N, GARZIGLIA S. Geomechanical constitutive modelling of gas-hydrate-bearing sediments[C]//Proceedings of the 7th International Conference on Gas Hydrates. Edinburgh, 2011.
[44] KLAR A, SOGA K, NG M Y A. Coupled deformation- flow analysis for methane hydrate extraction[J]. Géotechnique, 2010, 60(10): 765-776. DOI: 10.1680/geot.9.P.079-3799.
[45] MIYAZAKI K, TENMA N, AOKI K, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5(10): 4057-4075. DOI: 10.3390/en5104057.
[46] PINKERT S, GROZIC J L H, PRIEST J A. Strain-Softening Model for Hydrate-Bearing Sands[J]. International journal of geomechanics, 2015, 15(6): 04015007. DOI: 10.1061/(ASCE)GM.1943-5622.0000477.
[47] YAN C L, CHENG Y F, LI M L, et al. Mechanical experiments and constitutive model of natural gas hydrate reservoirs[J]. International journal of hydrogen energy, 2017, 42(31): 19810-19818. DOI: 10.1016/j.ijhydene.2017.06.135.
[48] SONG Y C, ZHU Y M, LIU W G, et al. The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments[J]. Journal of petroleum science and engineering, 2016, 147: 77-86. DOI: 10.1016/j.petrol.2016.05.009.
[49] UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of geophysical research: solid earth, 2012, 117(B3): B03209. DOI: 10.1029/2011JB008661.
[50] UCHIDA S, XIE X G, LEUNG Y F. Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments[J]. Journal of geophysical research: solid earth, 2016, 121(8): 5580-5595. DOI: 10.1002/2016JB012967.
[51] HASHIGUCHI K. Subloading surface model in unconventional plasticity[J]. International journal of solids and structures, 1989, 25(8): 917-945. DOI: 10.1016/0020-7683(89)90038-3.
[52] 吴二林, 韦昌富, 魏厚振, 等. 含天然气水合物沉积物损伤统计本构模型[J]. 岩土力学, 2013, 34(1): 60-65.
[53] 杨期君, 赵春风. 含气水合物沉积物弹塑性损伤本构模型探讨[J]. 岩土力学, 2014, 35(4): 991-997.
[54] 颜荣涛, 李扬, 杨德欢, 等. 含水合物砂土力学特性及本构模型[J]. 地下空间与工程学报, 2017, 13(4): 923-930.
[55] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10): 1273-1279. DOI: 10.7623/syxb201610007.
[56] 颜荣涛, 梁维云, 韦昌富, 等. 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38(1): 10-18. DOI: 10.16285/j.rsm.2017.01.002.
[57] 张峰, 刘丽华, 吴能友, 等. 含天然气水合物沉积介质力学本构关系及数值模拟研究现状[J]. 新能源进展, 2017, 5(6): 443-449. DOI: 10.3969/j.issn.2095-560X.2017.06.005.
Outlines

/