[1] LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy conversion and management, 2017, 150: 304-330. DOI: 10.1016/j. enconman.2017.08.016.
[2] BROWN S, PYKE D, STEENHOF P. Electric vehicles: the role and importance of standards in an emerging market[J]. Energy policy, 2010, 38(7): 3797-3806. DOI: 10.1016/j.enpol.2010.02.059.
[3] WANG Y S, SPERLING D, TAL G, et al. China's electric car surge[J]. Energy policy, 2017, 102: 486-490. DOI: 10.1016/j.enpol.2016.12.034.
[4] PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of power sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8.
[5] ZHANG Y C, WANG C Y, TANG X D. Cycling degradation of an automotive LiFePO4 lithium-ion battery[J]. Journal of power sources, 2011, 196(3): 1513-1520. DOI: 10.1016/j.jpowsour.2010.08.070.
[6] AN K, BARAI P, SMITH K, et al. Probing the thermal implications in mechanical degradation of lithium-ion battery electrodes[J]. Journal of the electrochemical society, 2014, 161(6): A1058-A1070. DOI: 10.1149/2.069406jes.
[7] SHAH K, CHALISE D, JAIN A. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of power sources, 2016, 330: 167-174. DOI: 10.1016/j.jpowsour.2016.08.133.
[8] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of power sources, 2012, 208: 210-224. DOI: 10.1016/j. jpowsour.2012.02.038.
[9] AN Z J, JIA L, DING Y, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of thermal science, 2017, 26(5): 391-412. DOI: 10.1007/s11630-017-0955-2.
[10] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the electrochemical society, 1985, 132(1): 5-12. DOI: 10.1149/1.2113792.
[11] RAO L, NEWMAN J. Heat-generation rate and general energy balance for insertion battery systems[J]. Journal of the electrochemical society, 1997, 144(8): 2697-2704. DOI: 10.1149/1.1837884.
[12] SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of power sources, 2001, 99(1/2): 70-77. DOI: 10.1016/S0378-7753(01)00478-5.
[13] WILLIFORD R E, VISWANATHAN V V, ZHANG J G. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries[J]. Journal of power sources, 2009, 189(1): 101-107. DOI: 10.1016/j.jpowsour. 2008.10.078.
[14] MALEKI H, AL HALLAJ S, SELMAN J R, et al. Thermal properties of lithium-ion battery and components[J]. Journal of the electrochemical society, 1999, 146(3): 947-954. DOI: 10.1149/1.1391704.
[15] CHO Y I, HALPERT G. Heat dissipation of high rate Li-SOCl2 primary cells[J]. Journal of power sources, 1986, 18(2/3): 109-115. DOI: 10.1016/0378-7753(86)80066-0.
[16] CHO Y I, CHEE D W. Thermal analysis of primary cylindrical lithium cells[J]. Journal of the electrochemical society, 1991, 138(4): 927-930. DOI: 10.1149/1.2085749.
[17] WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and sustainable energy reviews, 2016, 64: 106-128. DOI: 10.1016/j.rser.2016.05.033.
[18] DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/ insertion cell[J]. Journal of the electrochemical society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597.
[19] GU W B, WANG C Y. Thermal-electrochemical modeling of battery systems[J]. Journal of the electrochemical society, 2000, 147(8): 2910-2922. DOI: 10.1149/1.1393625.
[20] KIM G H, SMITH K, LEE K J, et al. 2011. Multi-Domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the electrochemical society, 2011, 158(8): A955-A969. DOI: 10.1149/1.3597614.
[21] LEE K J, SMITH K, PESARAN A, et al. Three dimensional thermal-, electrical-, and electrochemical- coupled model for cylindrical wound large format lithium-ion batteries[J]. Journal of power sources, 2013, 241: 20-32. DOI: 10.1016/j.jpowsour.2013.03.007.
[22] CHEN Y F, EVANS J W. Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile[J]. Journal of the electrochemical society, 1994, 141(11): 2947-2955. DOI: 10.1149/1.2059263.
[23] AL HALLAJ S, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of power sources, 1999, 83(1/2): 1-8. DOI: 10.1016/S0378-7753(99)00178-0.
[24] VERBRUGGE M W. Primary current distribution in a thin-film battery. Application to power-density calculations for lithium batteries[J]. Journal of electrostatics, 1995, 34(1): 61-85. DOI: 10.1016/0304-3886(94)00042-U.
[25] KWON K H, SHIN C B, KANG T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of power sources, 2006, 163(1): 151-157. DOI: 10.1016/j.jpowsour.2006.03.012.
[26] LIN X F, PEREZ H E, MOHAN S, et al. A lumped-parameter electro-thermal model for cylindrical batteries[J]. Journal of power sources, 2014, 257: 1-11. DOI: 10.1016/j.jpowsour.2014.01.097.
[27] GOUTAM S, NIKOLIAN A, JAGUEMONT J, et al. Three-dimensional electro-thermal model of li-ion pouch cell: analysis and comparison of cell design factors and model assumptions[J]. Applied thermal engineering, 2017, 126: 796-808. DOI: 10.1016/j.applthermaleng.2017.07.206.
[28] SOMASUNDARAM K, BIRGERSSON E, MUJUMDAR A S. Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery[J]. Journal of power sources, 2012, 203: 84-96. DOI: 10.1016/j.jpowsour.2011.11.075.
[29] YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of power sources, 2012, 199: 227-238. DOI: 10.1016/j.jpowsour.2011.10.027.
[30] HOSSEINZADEH E, GENIESER R, WORWOOD D, et al. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application[J]. Journal of power sources, 2018, 382: 77-94. DOI: 10.1016/j.jpowsour.2018.02.027.
[31] TANG Y W, JIA M, LI J, et al. Numerical analysis of distribution and evolution of reaction current density in discharge process of lithium-ion power battery[J]. Journal of the electrochemical society, 2014, 161(8): E3021-E3027. DOI: 10.1149/2.004408jes.
[32] XU M, ZHANG Z Q, WANG X, et al. Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of power sources, 2014, 256: 233-243. DOI: 10.1016/j.jpowsour.2014.01.070.
[33] MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of power sources, 2011, 196(13): 5685-5696. DOI: 10.1016/j.jpowsour.2011.02.076.
[34] ZHAO J T, RAO Z H, LI Y M. Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy conversion and management, 2015, 103: 157-165. DOI: 10.1016/j.enconman.2015.06.056.
[35] COLEMAN B, OSTANEK J, HEINZEL J. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions[J]. Applied energy, 2016, 180: 14-26. DOI: 10.1016/j.apenergy.2016.07.094.
[36] ZHAO R, GU J J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries[J]. Journal of power sources, 2015, 273: 1089-1097. DOI: 10.1016/j.jpowsour.2014.10.007.
[37] FAN LW, KHODADADI J M, PESARAN A A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles[J]. Journal of power sources, 2013, 238: 301-312. DOI: 10.1016/j.jpowsour.2013.03.050.
[38] XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of power sources, 2013, 240: 33-41. DOI: 10.1016/j.jpowsour.2013.03.004.
[39] NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of power sources, 2002, 110(2): 349-356. DOI: 10.1016/ S0378-7753(02)00197-0.
[40] PESARAN A A. Battery thermal management in EVs and HEVs: issues and solutions[C]//Proceedings of the First Annual Advanced Automotive Battery Conference. Las Vegas, Nevada: NREL, 2001.
[41] KOHN S, BERDICHEVSKY G, HEWETT B C. Tunable frangible battery pack system: 7923144B2[P]. 2011-04-12.
[42] ENDO T, NUKADA A, MATSUOKA S. Tsubame-KFC: a modern liquid submersion cooling prototype towards exascale becoming the greenest supercomputer in the world[C]//Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems. Hsinchu, Taiwan: IEEE, 2014: 360-367. DOI: 10.1109/PADSW. 2014.7097829.
[43] JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of power sources, 2011, 196(23): 10359-10368. DOI: 10.1016/j.jpowsour.2011.06.090.
[44] PARRISH R, ELANKUMARAN K, GANDHI M, et al. Voltec battery design and manufacturing[C]//Proceedings of World Congress & Exhibition. Detroit, USA: SAE, 2011. DOI: 10.4271/2011-01-1360.
[45] BEHR. Thermal management for hybrid vehicles[M]. Stuttgart Germany, Technical Press Day, 2009.
[46] AL HALLAJ S, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the electrochemical society, 2000, 147(9): 3231-3236.
[47] MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of power sources, 2005, 141(2): 307-315. DOI: 10.1016/j.jpowsour.2004.09.025.
[48] HUSSAIN A, ABIDI I H, TSO C Y, et al. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials[J]. International journal of thermal sciences, 2018, 124: 23-35.
[49] ZHOU X F, XIAO H N, FENG J, et al. Preparation and thermal properties of paraffin/porous silica ceramic composite[J]. Composites science and technology, 2009, 69(7/8): 1246-1249. DOI: 10.1016/j.compscitech.2009. 02.030.
[50] LI W Q, QU Z G, HE Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied thermal engineering, 2012, 37: 1-9. DOI: 10.1016/j. applthermaleng.2011.11.001.
[51] TRP A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit[J]. Solar energy, 2005, 79(6): 648-660. DOI: 10.1016/j.solener.2005.03.006.
[52] AKGÜN M, AYDIN O, KAYGUSUZ K. Thermal energy storage performance of paraf?n in a novel tube-in-shell system[J]. Applied thermal engineering, 2008, 28(5/6): 405-413. DOI: 10.1016/j.applthermaleng.2007.05.013.
[53] SWANEPOEL G. Thermal management of hybrid electrical vehicle using heat pipes[D]. South Africa: University of Stellenbosch, 2001.
[54] TRAN T H, HARMAND S, SAHUT B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery[J]. Journal of power sources, 2014, 265: 262-272. DOI: 10.1016/j. jpowsour.2014.04.130.
[55] 曾毓群. 聚合物锂离子电池安全性能研究及高温性能探讨[D]. 北京: 中国科学院物理研究所, 2006.
[56] SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of power sources, 2009, 194(1): 550-557. DOI: 10.1016/j.jpowsour.2009.05.002.
[57] CHEN Z Y, XIONG R, LU J H, et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied energy, 2018, 213: 375-383. DOI: 10.1016/ j.apenergy. 2018.01.068.
[58] CHIU K C, LIN C H, YEH S F, et al. An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of power sources, 2014, 251: 254-263. DOI: 10.1016/j.jpowsour.2013.11.069.
[59] SPOTNITZ R, FRANKLIN J. Abuse behavior of high- power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3.
[60] DAN P, MENGERITSKI E, GERONOV Y, et al. Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell[J]. Journal of power sources, 1995, 54(1): 143-145. DOI: 10.1016/0378-7753(94)02055-8.
[61] HE S Y, ZENG J B, HABTE B T, et al. Numerical reconstruction of microstructure of graphite anode of lithium-ion battery[J]. Science bulletin, 2016, 61(8): 656-664. DOI: 10.1007/s11434-016-1048-4.
[62] JIANG F M, PENG P, SUN Y Q. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of power sources, 2013, 243: 181-194. DOI: 10.1016/ j.jpowsour.2013.05.089.
[63] DONG T, PENG P, JIANG F M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International journal of heat and mass transfer, 2018, 117: 261-272. DOI: 10.1016/j.ijheatmasstransfer. 2017.10.024.
[64] 李志斌, 岑继文, 彭鹏, 等. 圆柱形锂离子电池热管理实验研究[J]. 新能源进展, 2016, 4(4): 305-311.
[65] PENG P, JIANG F M. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International journal of heat and mass transfer, 2015, 88: 411-423. DOI: 10.1016/j.ijheatmasstransfer.2015. 04.101.
[66] JIANG F M, PENG P. Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters[J]. Scientific reports, 2016, 6: 32639. DOI: 10.1038/srep32639.
[67] ZHAO C R, CAO W J, DONG T, et al. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International journal of heat and mass transfer, 2018, 120: 751-762. DOI: 10.1016/j.ijheatmasstransfer.2017.12.083.
[68] 赵春荣, 曹文炅, 董缇, 等. 圆柱形锂离子电池模组微通道液冷热模型[J]. 化工学报, 2017, 68(8): 3232-3241. DOI: 10.11949/j.issn.0438-1157.20170278.
[69] ZHAO C R, SOUSA A C M, JIANG F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International journal of heat and mass transfer, 2019, 129: 660-670. DOI: 10.1016/j.ijheatmasstransfer.2018.10.017.
[70] CAO W, ZHAO C, JIANG F, WANG Y, DONG T, PENG P. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. (Under review)
[71] CEN J W, LI Z B, JIANG F M. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management[J]. Energy for sustainable development, 2018, 45: 88-95. DOI: 10.1016/j.esd.2018.05.005.
[72] PENG P, SUN Y Q, JIANG F M. Thermal analyses of LiCoO2 lithium-ion battery during oven tests[J]. Heat and mass transfer, 2014, 50(10): 1405-1416. DOI: 10.1007/ s00231-014-1353-x.
[73] DONG T, WANG Y, PENG P, JIANG F, Electrical- thermal behaviors of a cylindrical graphite-NCA Li-ion battery responding to external short circuit operation[J]. International journal of energy research, 2019,1-16.
[74] 动力电池回收利用行业报告(2018)[R]. 北京: 中国电池联盟联合北京绿色智汇能源技术研究院, 2018.