[1] 中国制冷学会数据中心冷却工作组. 中国数据中心冷却技术年度发展研究报告2017[R]. 北京: 中国建筑工业出版社, 2018.
[2] 工业和信息化部, 国家机关事务管理局, 国家能源局. 关于印发国家绿色数据中心试点工作方案的通知(工信部联节[2015]82号)[EB/OL]. (2015-03-26). http://www.nandudu.com/article/15386.
[3] ZHANG H N, SHAO S Q, XU H B, et al. Free cooling of data centers: a review[J]. Renewable and sustainable energy reviews, 2014, 35: 171-182. DOI: 10.1016/j.rser. 2014.04.017.
[4] 殷平. 数据中心研究(7): 自然冷却[J]. 暖通空调, 2017, 47(11): 49-60, 124.
[5] 朱永忠. 数据中心制冷技术的应用及发展[J]. 工程建设标准化, 2015(8): 62-66.
[6] 中卫新闻网. 大数据时代的中卫梦——中国版“凤凰城“的打造和愿景[EB/OL]. (2017-10-03).
http://www.nxzwnews.net/sy/sywlpl/201711/t20171106_4408864.html.
[7] NIEMANN J, BEAN J, AVELAR V. Economizer modes of data center cooling systems[Z]. Paris: Schneider Inc. White, 2011: 1-19.
[8] 韩玉, 韩亚明, 刘水旺. 云数据中心绿色节能设计及应用实践[J]. 科研信息化技术与应用, 2012, 3(6): 56-65.
[9] 韩正林, 黄翔, 宋姣姣, 等. 自然冷却技术在数据中心/通信基站的应用现状初探[J]. 洁净与空调技术, 2014(4): 57-60. DOI: 10.3969/j.issn.1005-3298.2014.04.015.
[10] 何华明. 蒸发式冷气机应用于通信机房的节能分析[J]. 制冷与空调, 2011, 11(3): 107-111. DOI: 10.3969/j.issn. 1009-8402.2011.03.026.
[11] 范坤, 黄翔, 周敏, 等. 浅谈蒸发式冷气机在通信机房应用的几种形式[J]. 发电与空调, 2012, 33(4): 52-57. DOI: 10.3969/J.ISSN.2095-3429.2012.04.014.
[12] 黄翔, 周海东, 范坤, 等. 通信机房应用直接蒸发冷却空调方式的优化及节能分析[J]. 暖通空调, 2013, 43(10): 28-34.
[13] 耿海波, 李建尧, 邹成. 温和地区数据中心新风自然冷却节能技术探讨[J]. 暖通空调, 2017, 47(10): 19-25.
[14] 谢代锋, 葛俊, 杨栋. 智能热交换器与空调系统构建的“绿色基站”解决方案与实践[J]. 信息通信技术, 2009, 3(4): 39-43. DOI: 10.3969/j.issn.1674-1285.2009. 04.008.
[15] POTTS Z. Free cooling technologies in data centre applications[R]. Manchester: SUDLOWS White Paper, 2011.
[16] 张海南, 邵双全, 田长青. 数据中心自然冷却技术研究进展[J]. 制冷学报, 2016, 37(4): 46-57. DOI: 10.3969/j.issn.0253-4339.2016.04.046.
[17] 李震, 田浩, 张海强, 等. 用于高密度显热机房排热的分离式热管换热器性能优化分析[J]. 暖通空调, 2011, 41(3): 38-43. DOI: 10.3969/j.issn.1002-8501.2011.03.005.
[18] 钱晓栋, 李震, 李志信. 数据机房热管空调系统的实验研究[J]. 工程热物理学报, 2012, 33(7): 1217-1220.
[19] 罗铭, 李震. 数据机房热管背板系统极端工况研究[J]. 工程热物理学报, 2017, 38(1): 183-187.
[20] 田浩, 李震. 基于环路热管技术的数据中心分布式冷却方案及其应用[J]. 世界电信, 2011(10): 48-52. DOI: 10.3969/j.issn.1001-4802.2011.10.032.
[21] 马国远, 魏川铖, 张双, 等. 某小型数据中心散热用泵驱动回路热管换热机组的应用研究[J]. 北京工业大学学报, 2015, 41(3): 439-445. DOI: 10.11936/bjutxb2014070028.
[22] 凌丽. 数据机房用微通道分离式热管换热特性及节能研究[D]. 长沙: 湖南大学, 2017.
[23] TONG Z, LIU X H, JIANG Y. Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop[J]. Applied energy, 2017, 186: 1-12. DOI: 10.1016/j.apenergy.2016.10.121.
[24] ZHANG H N, SHAO S Q, JIN T X, et al. Numerical investigation of a CO2 loop thermosyphon in an integrated air conditioning system for free cooling of data centers[J]. Applied thermal engineering, 2017, 126: 1134-1140. DOI: 10.1016/j.applthermaleng.2016.12.135.
[25] ZHANG P L, WANG B L, SHI W X, et al. Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer[J]. International journal of refrigeration, 2015, 58: 172-185. DOI: 10.1016/j.ijrefrig.2015.06.014.
[26] ZHANG P L, WANG B L, SHI W X, et al. Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer[J]. Applied energy, 2015, 160: 10-17. DOI: 10.1016/j.apenergy.2015.09.033.
[27] WEBER R M, WYATT W G. Heat removal system for computer rooms: 7907395[P]. 2011-03-15.
[28] 数据中心运维管理. 号外: 数据中心跳大海事件[EB/OL]. (2016-05-31).
https://mp.weixin.qq.com/s/aOq56rdAnSDngx67GBu5yQ.
[29] 陈杨. What!微软将数据中心打造成“海底捞”[EB/OL]. (2018-08-27). http://server.zol.com.cn/694/6943175.html.
[30] 牛晓然, 夏春华, 孙国林, 等. 千岛湖某数据中心采用湖水冷却技术的空调系统设计[J]. 暖通空调, 2016, 46(10): 14-17.
[31] 张泉, 李震. 数据中心节能技术与应用[M]. 北京: 机械工业出版社, 2018.
[32] 郑钢, 宋吉. 冷却塔供冷系统设计中应该注意的问题[J]. 制冷与空调, 2006, 6(2): 75-78. DOI: 10.3969/j. issn.1009-8402.2006.02.019.
[33] 曾晓庆. 电子厂房自然供冷空调系统应用的优化与其区域适应性研究[D]. 上海: 上海交通大学, 2014.
[34] 王泽青. 中国大陆不同气候分区数据中心自然冷却模式的PUE分析[D]. 天津: 天津商业大学, 2015.
[35] 折建利, 黄翔, 刘凯磊, 等. 冷却塔自然供冷系统在兰州某数据中心应用的测试分析[J]. 暖通空调, 2016, 46(10): 18-22.
[36] 张素丽. 数据中心冷水系统自然冷却节能分析[J]. 暖通空调, 2016, 46(5): 80-83.
[37] ZIEGLER F. Sorption heat pumping technologies: Comparisons and challenges[J]. International journal of refrigeration, 2009, 32(4): 566-576. DOI: 10.1016/j. ijrefrig.2009.03.007.
[38] HAMANN H F, IYENGAR M K, KESSEL T G. Cooling infrastructure leveraging a combination of free and solar cooling: 8020390[P]. 2011-09-20.
[39] DONG K J, LI P J, HUANG Z L, et al. Research on free cooling of data centers by using indirect cooling of open cooling tower[J]. Procedia engineering, 2017, 205: 2831-2838. DOI: 10.1016/j.proeng.2017.09.902.
[40] 苏林, 董凯军, 刘腾庆, 等. 一种用于机柜冷却的大温差空调末端装置: 201621084756.X[P]. 2016-09-26.
[41] 苏林, 董凯军, 刘腾庆, 等. 一种用于数据中心高热密度机柜的散热冷却方法: 2016108551980[P]. 2017-02-08.
[42] LEE K P, Chen H L. Analysis of energy saving potential of air-side free cooling for data centers in worldwide climate zones[J]. Energy and buildings, 2013, 64: 103-112. DOI: 10.1016/j.enbuild.2013.04.013.
[43] CHO J, LIM T, KIM B S. Measurements and predictions of the air distribution systems in high compute density (Internet) data centers[J]. Energy and buildings, 2009, 41(10): 1107-1115. DOI: 10.1016/j.enbuild.2009.05.017.
[44] CHO J, YANG J, PARK W. Evaluation of air distribution system's airflow performance for cooling energy savings in high-density data centers[J]. Energy and buildings, 2014, 68: 270-279. DOI: 10.1016/j.enbuild.2013.09.013.
[45] 李红霞. 通信机房空调上送风与下送风方式的利弊分析[J]. 邮电设计技术, 2004(4): 60-62. DOI: 10.3969/j. issn.1007-3043.2004.04.015.
[46] 江家青. 通信机房上送风空调方式的改善[J]. 机电技术, 2009, 32(2): 117-119, 127. DOI: 10.3969/j.issn.1672- 4801.2009.02.043.
[47] 刘成, 陈乐天, 王颖. 通信机房空调气流组织合理化研究[J]. 建筑热能通风空调, 2010, 29(5): 80-84. DOI: 10.3969/j.issn.1003-0344.2010.05.019.
[48] ROGER S, APARNA V. Energy savings through hot and cold aisle containment configurations for air cooled servers in data centers[C]//ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. Portland, Oregon, USA: ASME, 2011: 611-616. DOI: 10.1115/IPACK2011-52206.
[49] 张杰, 周浩, 冯杜波, 等. 小型数据中心气流组织及能耗优化[J].天津大学学报(自然科学与工程技术版), 2014, 47(7): 647-652. DOI:10.11784/tdxbz201306035.
[50] PATANKAR S V. Airflow and cooling in a data center[J]. Journal of heat transfer, 2010, 132(7): 073001. DOI: 10.1115/1.4000703.
[51] JOSHI Y, KUMAR P. Energy efficient thermal management of data centers[M]. New York: Spring, 2012: 39-136.
[52] FAKHIM B, NAGARATHINAM S. Effect of under-floor blockages and perforated tile openings on the performance of raised-floor data centres[C]//Proceedings of the 17th Australasian Fluid Mechanics Conference. Auckland: University of Auckland, 2010: 5-9.
[53] FULPAGARE Y, MAHAMUNI G, BHARGAV A. Effect of plenum chamber obstructions on data center performance[J]. Applied thermal engineering, 2015, 80: 187-195. DOI: 10.1016/j.applthermaleng.2015.01.065.
[54] ZHANG K, ZHANG X S, LI S H, et al. Experimental study on the characteristics of supply air for UFAD system with perforated tiles[J]. Energy and buildings, 2014, 80: 1-6. DOI: 10.1016/j.enbuild.2014.05.007.
[55] ZHANG K, ZHANG X S, LI S H. Simplified model for desired airflow rate in underfloor air distribution (UFAD) systems[J]. Applied thermal engineering, 2016, 93: 244-250. DOI: 10.1016/j.applthermaleng.2015.09.053.
[56] WANG I N, TSUI Y Y, WANG C C. Improvements of airflow distribution in a container data center[J]. Energy Procedia, 2015, 75: 1819-1824. DOI: 10.1016/j.egypro. 2015.07.153.
[57] ARGHODE V K, JOSHI Y. Experimental investigation of air flow through a perforated tile in a raised floor data center[J]. Journal of electronic packaging, 2015, 137(1): 011011. DOI: 10.1115/1.4028835.
[58] SUNDARALINGAM V, ARGHODE V K, JOSHI Y. Experimental characterization of cold aisle containment for data centers[C]//Proceedings of 2013 Twenty Ninth IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, CA, USA: IEEE, 2013: 223-230. DOI: 10.1109/SEMI-THERM.2013.6526833.
[59] SUNDARALINGAM V, ARGHODE V K, JOSHI Y, et al. Experimental characterization of various cold aisle containment configurations for data centers[J]. Journal of electronic packaging, 2014, 137(1): 011007. DOI: 10.1115/1.4028520.
[60] NADA S A, ELFEKY K E. Experimental investigations of thermal managements solutions in data centers buildings for different arrangements of cold aisles containments[J]. Journal of building engineering, 2016, 5: 41-49. DOI: 10.1016/j.jobe.2015.11.001.
[61] NADA S A, SAID M A. Effect of CRAC units layout on thermal management of data center[J]. Applied thermal engineering, 2017, 118: 339-344. DOI: 10.1016/j. applthermaleng.2017.03.003.
[62] NADA S A, SAID M A, RADY M A. CFD investigations of data centers’ thermal performance for different configurations of CRACs units and aisles separation[J]. Alexandria engineering journal, 2016. 55(2): 959-971. DOI: 10.1016/j.aej.2016.02.025.
[63] 原世杰, 鹿世化. 基于热环境评价指标的数据中心气流组织模拟研究[J]. 暖通空调, 2016, 46(1): 66-72.
[64] YOSHII A, MINO Y, WARAGAI S, et al. Development of a rack-type air-conditioner for improving energy saving in a data center[C]//Proceedings of the 31st International Telecommunications Energy Conference. Incheon, South Korea: IEEE, 2009. DOI: 10.1109/INTLEC.2009.5351944.
[65] 蒋雅靖, 刘刚. 数据机房不同下送风方式的模拟分析及对比[J]. 建筑节能, 2011, 39(1): 18-20. DOI: 10.3969/j.issn.1673-7237.2011.01.004.
[66] PRIYADUMKOL J, KITTICHAIKARN C. Application of the combined air-conditioning systems for energy conservation in data center[J]. Energy and buildings, 2014, 68: 580-586. DOI: 10.1016/j.enbuild.2013.07.082.
[67] 刘芳, 王志刚. 某数据中心室内空调气流组织的模拟研究[J]. 建筑节能, 2016, 44(10): 11-17. DOI: 10.3969/j.issn.1673-7237.2016.10.004.
[68] 黄志林, 董凯军, 苏林, 等. 数据中心机柜级冷却数值模拟及空调容灾分析[J]. 新能源进展, 2018, 6(1): 76-82. DOI: 10.3969/j.issn.2095-560X.2018.01.012.
[69] HUANG Z L, DONG K J, SU L, et al. Numerical simulation and comparative analysis of different airflow distributions in data centers[C]//Proceedings of the 10th International Symposium on Heating, Ventilation and Air Conditioning. Jinan, China: Elsevier Ltd, 2017: 2378-2385. DOI: 10.1016/j.proeng.2017.09.854.
[70] 黄庆河, 曹连华, 蔡宇. 水蓄冷技术在数据中心的应用研究[J]. 暖通空调, 2016, 46(10): 1-4, 17.
[71] 汪向磊, 王文梅, 曹和平, 等. 蓄冷技术现状及研究进展[J]. 山西化工, 2016, 36(1): 34-40. DOI: 10.16525/j.cnki.cn14-1109/tq.2016.01.10,
[72] 刘道平. 蓄冷技术及其应用现状[J]. 暖通空调, 1995(4): 30-33.
[73] 李竞, 吴喜平. 蓄冷蓄热技术[J]. 上海节能, 2005(4): 78-82.
[74] 周敏, 杨春方. 蓄冷技术的应用及冰蓄冷工程的优化设计[J]. 电力需求侧管理, 2013, 15(5): 1-5. DOI: 10.3969/j.issn.1009-1831.2013.05.001.
[75] 张永铨. 我国蓄冷技术的发展[J]. 暖通空调, 2010, 40(6): 2-5. DOI: 10.3969/j.issn.1002-8501.2010.06.002.
[76] HASNAIN S M. Review on sustainable thermal energy storage technologies, Part II: cool thermal storage[J]. Energy conversion and management, 1998, 39(11): 1139-1153. DOI: 10.1016/S0196-8904(98)00024-7.
[77] DORGAN C E, ELLESON J S. Design guide for cool thermal storage[J]. ASHRAE transactions, 1993, 99(II), 798-804.
[78] TRAN N, KREIDER J F, BROTHERS P. Field measurements of chilled water storage thermal performance[J]. ASHRAE transactions, 1989, 95(1): 1106-1112.
[79] HENSEL E C, ROBINSON N L, BUNTAIN J. Chilled water thermal storage system performance monitoring[J]. ASHRAE transactions, 1991, 97(2): 1151-1160.
[80] YAU Y H, RISMANCHI B. A review on cool thermal storage technologies and operating strategies[J]. Renewable and sustainable energy reviews, 2012, 16(1): 787-797. DOI: 10.1016/j.rser.2011.09.004.
[81] 孙长青, 焦义华. 数据中心蓄冷系统的选择及蓄冷时间的确定[J]. 节能, 2017, 36(12): 60-62. DOI: 10.3969/j.issn.1004-7948.2017.12.016.
[82] 张纯星, 季军, 荣文涛, 等. 数据中心大型蓄冷罐设计及密闭施工解析[J]. 工程建设与设计, 2017(7): 141-143, 146. DOI: 10.13616/j.cnki.gcjsysj.2017.04.048.
[83] 吴冬青, 陈向阳. 上海某大型数据中心水蓄冷系统设计方案研究[J]. 暖通空调, 2017, 47(12): 58-64.
[84] 张弢. 水蓄冷空调系统在数据中心工程中的应用[J]. 邮电设计技术, 2014(1): 15-17.
[85] 黄丽. 温度分层型水蓄冷槽的模拟及理论研究[D]. 武汉: 武汉科技大学, 2010.
[86] 于航, 邓育涌, 孙斌, 等. 温度分层型水蓄冷罐的仿真研究[J]. 能源技术, 2006, 27(3): 120-122, 126. DOI: 10.3969/j.issn.1005-7439.2006.03.009.
[87] 方贵银, 陈则韶. 大过冷度制冷—高温水蓄冷空调系统实验研究[C]//全国暖通空调制冷2002年学术年会论文集/上册. 广州: 中国建筑学会, 中国制冷学会, 2002: 502-505.
[88] 董凯军, 孙钦. 一种大温差全热袋式蓄冷装置、蓄冷系统及节能控制方法: 201810069637[P]. 2018-01-24.
[89] 董凯军, 周群, 胡涛, 等. 一种螺旋式大温差水蓄冷装置: 201420154743.X[P]. 2014-03-31.
[90] 周群, 董凯军, 胡涛, 等. 一种盘旋式大温差水蓄冷装置: 201420154555.7[P]. 2014-03-31.
[91] 王丽娜. 蓄冰盘管传热性能研究与冰蓄冷系统经济性分析[D]. 石家庄: 河北工业大学, 2007.
[92] 曲凯阳, 江亿. 日本过冷水动态制冰研究开发现状[J]. 暖通空调, 1998(3): 31-36.
[93] 于震, 曲凯阳, 江亿. 过冷水连续制冰系统中过冷却器进出口水温的选择[J]. 制冷学报, 2003(1): 46-50. DOI: 10.3969/j.issn.0253-4339.2003.01.010.
[94] EGOLF P W, KAUFFELD M. From physical properties of ice slurries to industrial ice slurry applications[J]. International journal of refrigeration, 2005, 28(1): 4-12. DOI: 10.1016/j.ijrefrig.2004.07.014.
[95] PRONK P, HANSEN T M, FERREIRA C A I, et al. Time-dependent behavior of different ice slurries during storage[J]. International journal of refrigeration, 2005, 28(1): 27-36. DOI: 10.1016/j.ijrefrig.2004.07.011.
[96] 董凯军, 王志强, 陈照杰, 等. 动态冰蓄冷在牛奶行业的节能应用[J]. 制冷与空调(四川), 2014, 28(4): 391-396. DOI: 10.3969/j.issn.1671-6612.2014.04.001.
[97] 徐今强, 肖睿, 黄冲, 等. 基于PLC和触摸屏的动态冰蓄冷空调控制系统设计[J]. 低温工程, 2008(6): 40-44. DOI: 10.3969/j.issn.1000-6516.2008.06.009.
[98] 张尧康, 苏林, 董凯军, 等. RC318直接接触制冰特性的实验研究[J]. 暖通空调. (已接收)