Welcome to visit Advances in New and Renewable Energy!

Research Progress on Microalgae Carbon Capture: Biological Intrinsic Property on Energy Conversion

  • DENG Shuai ,
  • LI Shuang-jun ,
  • SONG Chun-feng ,
  • LI Yang
Expand
  • 1. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, Tianjin 300350, China;
    2. School of Environment Science and Engineering, Tianjin University, Tianjin 300350, China;
    3. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

Received date: 2018-11-20

  Revised date: 2019-02-19

  Online published: 2019-04-30

Abstract

Microalgae carbon capture via photosynthesis is considered as an energy conversion process from solar energy to chemical energy under the biological mechanism. Thus, research on intrinsic property of energy conversion in microalgae carbon capture is beneficial to intrinsically reveal and grasp the mechanism of high-efficient carbon capture, and to explore innovative pathways and new methods of efficiency improvement and quality enhancement. The recent advances of typical researches on this topic was collected from various disciplines and reviewed in this paper, especially two aspects on mechanism and theory, quantitative calculation method. Then, the representative challenges in this field was summarized with a summary drawn on limitation factors on mechanism research of energy conversion and free energy dissipation. In addition, the role of thermodynamic in solving such challenges was discussed mainly with aspects on mechanism and theory, framework and method in possible solutions. The contributions from representative achievements of interdisciplinary research in recent years were overviewed as well. Finally, the key supporting techniques, such as genomics, micro-calorimetry experiment and data sampling method were reviewed, and the research of metabolic network based on thermo-dynamic constraint was prospected.

Cite this article

DENG Shuai , LI Shuang-jun , SONG Chun-feng , LI Yang . Research Progress on Microalgae Carbon Capture: Biological Intrinsic Property on Energy Conversion[J]. Advances in New and Renewable Energy, 2019 , 7(2) : 105 -114 . DOI: 10.3969/j.issn.2095-560X.2019.02.001

References

[1] WILCOX J.Carbon capture[M]. New York: Springer, 2012: 231.
[2] MURADOV N.Liberating energy from carbon: introduction to decarburization[M]. New York: Springer, 2014: 349.
[3] 厉雄峰, 李清毅, 胡达清, 等. 微藻生物固碳法在煤电碳减排应用的研究进展[J]. 化工进展, 2016, 35(S2): 347-351. DOI: 10.16085/j.issn.1000-6613.2016.s2.062.
[4] 国家自然科学基金委员会工程与材料科学部. 工程热物理与能源利用学科发展战略研究报告(2011— 2020)[M]. 北京: 科学出版社, 2011: 310-312.
[5] 中国科学院能源领域战略研究组. 中国至2050年能源科技发展路线图[M]. 北京: 科学出版社, 2009: 70-71.
[6] 国家自然科学基金委员会, 中国科学院. 未来10年中国学科发展战略: 能源科学[M]. 北京: 科学出版社, 2012: 205-216.
[7] 朱顺妮, 刘芬, 樊均辉, 等. 微藻生物能源研究现状及展望[J]. 新能源进展, 2018, 6(6): 467-474. DOI: 10.3969/j.issn.2095-560X.2018.06.002.
[8] 邓帅, 李双俊, 宋春风, 等. 微藻光合固碳效能研究: 进展、挑战和解决路径[J]. 化工进展, 2018, 37(3): 928-937. DOI: 10.16085/j.issn.1000-6613.2017-1106.
[9] 高坤山. 藻类固碳:理论、进展与方法[M]. 北京: 科学出版社, 2014: 131.
[10] 许大全. 光合作用学[M]. 北京: 科学出版社, 2013.
[11] MATHIMANI T, BALDINELLI A, RAJENDRAN K, et al.Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps[J]. Journal of cleaner production, 2019, 208: 1053-1064. DOI: /10.1016/j.jclepro.2018.10.096.
[12] 山道茂. 生物热力学导论[M]. 屈松生, 黄素秋, 译. 北京: 高等教育出版社, 1987.
[13] SKULACHEV V P, BOGACHEV A V, KASPARINSKY F O.Principles of bioenergetics[M]. Berlin, Heidelberg: Springer, 2013.
[14] 范功端, 林茹晶, 苏昭越, 等. 利用藻类构建微生物燃料电池研究进展[J]. 化工进展, 2016, 35(12): 3841-3847. DOI: 10.16085/j.issn.1000-6613.2016.12.016.
[15] SCOTT C B.A primer for the exercise and nutrition sciences: thermodynamics, bioenergetics, metabolism[M].
Totowa, NJ: Springer, 2008.
[16] KLIPP E, HERWIG R, KOWALD A, 等. 系统生物学的理论、方法和应用[M]. 贺福初, 杨芃原, 朱云平, 译. 上海: 复旦大学出版社, 2007.
[17] LI Y, WANG P, CHEN L, et al.Genome characterization and regulation network analysis of the oleaginous microalgae chlorella sorokiniana[C]//Proceedings of the Plant and Animal Genome Conference XXI. San Diego, USA: PAGC, 2014, 1: 11-15.
[18] 泽瓦勒贝M, 鲍姆J O. 理解生物信息学[M]. 李亦学, 郝沛, 译. 北京: 科学出版社, 2012.
[19] BEARD D A, LIANG S D, QIAN H.Energy balance for analysis of complex metabolic networks[J]. Biophysical journal, 2002, 83(1): 79-86. DOI: 10.1016/S0006-3495 (02)75150-3.
[20] FRITZEMEIER C J, HARTLEB D, SZAPPANOS B, et al.Erroneous energy-generating cycles in published genome scale metabolic networks: identification and removal[J]. PLoS computational biology, 2017, 13(4): e1005494. DOI: 10.1371/journal.pcbi.1005494.
[21] DE MARTINO D.Scales and multimodal flux distributions in stationary metabolic network models via thermodynamics[J]. Physical review E, 2017, 95(6): 062419. DOI: 10.1103/PhysRevE.95.062419.
[22] 张凯. 基于热力学约束的克雷伯氏杆菌产1,3-丙二醇代谢通量优化分析[D]. 青岛: 青岛科技大学, 2017.
[23] 美国能源部计算生物学项目数学科学研究委员会, 美国国家学术院国家研究委员会. 数学与21世纪生物学[M]. 邵伟文, 译. 北京: 清华大学出版社, 2015.
[24] 张夷, 谢璐, 袁子能. 热力学约束下代谢网络流量的蒙特卡洛采样方法[J]. 中国科学技术大学学报, 2009, 39(4): 357-364.
[25] 张弛, 程丽华, 陈荣辉, 等. 小球藻产三酰甘油过程的代谢途径分析[J]. 现代化工, 2014, 34(9): 55-58, 60. DOI: 10.16606/j.cnki.issn0253-4320.2014.09.017
[26] 程军, 杨宗波, 黄云, 等. 核诱变驯化微藻固定燃煤烟气中的CO2[J]. 燃烧科学与技术, 2016, 22(3): 193-197. DOI: 10.11715/rskxjs.R201603023.
[27] 尚常花, 朱顺妮, 王忠铭, 等. 微藻培养方法研究进展[J]. 新能源进展, 2016, 4(2): 105-110. DOI: 10.3969/j. issn.2095-560X.2016.02.005.
[28] ZHENG Q, XU X Y, MARTIN G J O, et al. Critical review of strategies for CO2 delivery to large-scale microalgae cultures[J]. Chinese journal of chemical engineering, 2018, 26(11): 2219-2228. DOI: 10.1016/j.cjche.2018.07.013.
[29] MULLER A W J. Thermosynthesis by biomembranes: energy gain from cyclic temperature changes[J]. Journal of theoretical biology, 1985, 115(3): 429-453. DOI: 10.1016/S0022-5193(85)80202-2.
[30] 菲利普•纳尔逊. 生物物理学: 能量、信息、生命[M]. 黎明, 译. 上海: 上海科学技术出版社, 2016.
[31] 马尔科姆•朗盖尔. 物理学中的理论概念[M]. 向守平, 译. 合肥: 中国科学技术大学出版社, 2017.
[32] 沈维道, 蒋智敏, 童钧耕, 等. 工程热力学[M]. 3版. 北京: 高等教育出版社, 2001.
[33] MORAN M J, SHAPIRO H N, BOETTNER D D, et al.Fundamentals of engineering thermodynamics[M]. 8th ed. Hoboken: Wiley & Sons, Inc., 2014.
[34] 李洪钟. 浅论过程工程的科学基础[J]. 过程工程学报, 2008, 8(4): 635-644. DOI: 10.3321/j.issn:1009-606X.2008. 04.002.
[35] HUANG W L, LI J H, EDWARDS P P.Mesoscience: exploring the common principle at mesoscales[J]. National science review, 2018, 5(3): 321-326. DOI: 10.1093/nsr/nwx083.
[36] 梁宇, 荆玉祥, 沈世华, 等. 植物蛋白质组学研究进展[J]. 植物生态学报, 2004, 28(1): 114-125. DOI: 10.17521/cjpe.2004.0017.
[37] 埃尔温•薛定谔. 薛定谔生命物理学讲义[M]. 赖海强, 译. 北京: 北京联合出版公司, 2017: 6.
[38] 巴布洛杨茨. 分子、动力学与生命: 物质自组织引论[M]. 卢侃, 译. 上海: 三联书店上海分店, 1993: 12.
[39] GIBBS J W.The collected works of J. Willard Gibbs. Volume I thermodynamics[M]. New York: Longmans, 1928.
[40] NIST. Robert N Goldberg[EB/OL].[2019-03-25]. https://www.nist.gov/people/robert-n-goldberg.
[41] MCGRATH L.The life of Prof. Robert A.Alberty [EB/OL]. [2019-03-25].
https://thetech.com/2014/01/29/albertyobit-v133-n64.
[42] LI X, DEARD D A.A database of thermodynamic properties of the reactions of glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway [EB/OL]. [2019-03-25].https://www.ncbi.nlm.nih.gov/pubmed/21482578.
[43] ARRIOLA M B, VELMURUGAN N, ZHANG Y, et al.Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga[J]. The plant journal, 2018, 93(3): 566-586. DOI: 10.1111/tpj.13789.
[44] BLANC G, DUNCAN G, AGARKOVA I, et al.The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex[J]. The plant cell, 2010, 22(9): 2943-2955. DOI: 10.1105/tpc.110.076406.
[45] LI L, ZHANG G Q, WANG Q H.De novo transcriptomic analysis of Chlorella sorokiniana reveals differential genes expression in photosynthetic carbon fixation and lipid production[J]. BMC microbiology, 2016, 16: 223. DOI: 10.1186/s12866-016-0839-8.
[46] MULLER-FEUGA A, LE GUÉDES R, HERVÉ A, et al. Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum[J]. Journal of applied phycology, 1998, 10(1): 83-90. DOI: 10.1023/A:1008046814640.
Outlines

/