Welcome to visit Advances in New and Renewable Energy!

Advances in Strengthening Solar Phase Change Heat Storage Technology

  • MENG Juan ,
  • WU Wen-xiao ,
  • CHENG Meng ,
  • GUAN Xin
Expand
  • School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Received date: 2018-11-03

  Revised date: 2018-11-26

  Online published: 2019-04-30

Abstract

In order to solve the intermittent problem of solar energy, it is often combined with phase change heat storage technology. Compared with traditional sensible heat storage, phase change heat storage can increase the heat storage energy several times or more, which has great research and application value. In this paper, the heat transfer mechanism of phase change heat storage and research methods in strengthening solar phase change heat storage technology were summarized and analyzed, such as transforming heat storage structure, adding ribs, using phase change capsules, filling multiphase change materials, adding high thermal conductivity materials to the heat storage material and so on. Results showed as follows: in the phase change heat transfer mechanism, the melting process mainly considered convective heat transfer, and the heat transfer in the solidification process was dominant; the use of ribs, phase change capsules, etc., mainly increased the ratio of the phase change material contact surface to the heat storage body, thereby improved heat transfer; the addition of high thermal conductivity material to the heat storage material can improve the agglomeration, tuberculosis and service life of the phase change material, thereby improved the thermal conductivity, and the effect of adding the foam metal was most remarkable.

Cite this article

MENG Juan , WU Wen-xiao , CHENG Meng , GUAN Xin . Advances in Strengthening Solar Phase Change Heat Storage Technology[J]. Advances in New and Renewable Energy, 2019 , 7(2) : 155 -160 . DOI: 10.3969/j.issn.2095-560X.2019.02.007

References

[1] 崔海亭, 杨锋. 蓄热技术及其应用[M]. 北京: 化学工业出版社, 2004.
[2] NAGANO K, OGAWA K, MOCHIDA T, et al.Performance of heat charge/discharge of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture to a single vertical tube for a latent heat storage system[J]. Applied thermal engineering, 2004, 24(2/3): 209-220. DOI: 10.1016/j.applthermaleng.2003.09.002.
[3] SHAMSUNDAR N, SPARROW E M.Analysis of multidimensional conduction phase change via the enthalpy model[J]. Journal of heat transfer, 1975, 97(3): 333-340. DOI: 10.1115/1.3450375.
[4] SHATIKIAN V, ZISKIND G, LETAN R.Numerical investigation of a PCM-based heat sink with internal fins[J]. International journal of heat and mass transfer, 2005, 48(17): 3689-3706. DOI: 10.1016/j.ijheatmasstransfer. 2004.10.042.
[5] 刘泛函, 王仕博, 王华, 等. 圆柱形相变蓄热单元性能的理论与数值研究[J]. 太阳能学报, 2015, 36(3): 575-580. DOI: 10.3969/j.issn.0254-0096.2015.03.009.
[6] 夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614.
[7] MURRAY R E, GROULX D.Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging[J]. Renewable Energy, 2014, 62: 571-581. DOI: 10.1016/j.renene.2013.08.007.
[8] 陈华, 杨亚星, 周楚. 相变蓄热装置内温度场的模拟与实验研究[J]. 热科学与技术, 2018, 17(1): 15-20. DOI: 10.13738/j.issn.1671-8097.017008.
[9] 李凤飞, 刁彦华, 赵耀华, 等. 平板微热管式相变蓄热装置蓄放热特性研究[J]. 工程热物理学报, 2016, 37(6): 1253-1260.
[10] 崔海亭, 张改, 蒋静智. 多排管式相变蓄热器熔化过程热性能数值模拟研究[J]. 流体机械, 2014, 42(4): 56-61. DOI: 10.3969/j.issn.1005-0329.2014.04.012.
[11] MAT S, AL-ABIDI A A, SOPIAN K, et al. Enhance heat transfer for PCM melting in triplex tube with internal- external fins[J]. Energy conversion and management, 2013, 74: 223-236. DOI: 10.1016/j.enconman.2013.05.003.
[12] AL-ABIDI A A, MAT S, SOPIAN K, et al. Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system[J]. Energy and buildings, 2013, 60: 270-279. DOI: 10.1016/ j.enbuild.2013.01.031.
[13] LANGURI E M, AIGBOTSUA C O, ALVARADO J L.Latent thermal energy storage system using phase change material in corrugated enclosures[J]. Applied thermal engineering, 2013, 50(1): 1008-1014. DOI: 10.1016/j. applthermaleng.2012.07.012.
[14] 徐家慧, 陈贵军. 椭圆管强化固液相变蓄热器的数值模拟[J]. 节能, 2016, 35(7): 14-18.
[15] 崔海亭, 王振辉, 郭彦书, 等. 圆柱形相变蓄热器蓄/放热性能实验研究[J]. 太阳能学报, 2009, 30(10): 1368-1372. DOI: 10.3321/j.issn:0254-0096.2009.10.013.
[16] HOSSEINI M J, RANJBAR A A, SEDIGHI K, et al.A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger[J]. International communications in heat and mass transfer, 2012, 39(9): 1416-1424. DOI: 10.1016/j.icheatmasstransfer. 2012.07.028.
[17] RATHOD M K, BANERJEE J.Experimental investigations on latent heat storage unit using paraffin wax as phase change material[J]. Experimental heat transfer, 2014, 27(1): 40-55. DOI: 10.1080/08916152.2012.719065.
[18] TAY N H S, BRUNO F, BELUSKO M. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD[J]. Applied energy, 2013, 104: 79-86. DOI: 10.1016/j.apenergy.2012.10.040.
[19] RATHOD M K, BANERJEE J.Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins[J]. Applied thermal engineering, 2015, 75: 1084-1092. DOI: 10.1016/j.applthermaleng.2014.10.074.
[20] AL-ABIDI A A, MAT S, SOPIAN K, et al. Internal and
external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied thermal engineering, 2013, 53(1): 147-156. DOI: 10.1016/j.applthermaleng.2013.01.011.
[21] 袁培, 郝亚萍, 王建军, 等. 带内翅片蓄热装置固-液相变过程的数值模拟[J]. 华北水利水电大学学报(自然科学版), 2016, 37(3): 89-92. DOI: 10.3969/j.issn.1002- 5634.2016.03.017.
[22] SU W G, DARKWA J, KOKOGIANNAKIS G, et al.Development of microencapsulated phase change material for solar thermal energy storage[J]. Applied thermal engineering, 2017, 112: 1205-1212. DOI: 10.1016/j. applthermaleng.2016.11.009.
[23] ARKAR C, MEDVED S.Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres[J]. Thermochimica acta, 2005, 438(1/2): 192-201. DOI: 10.1016/j.tca.2005.08.032.
[24] 赵奕萌, 付锐朋, 张嘉杰, 等. 相变微胶囊单体熔化传热过程研究[J]. 工程热物理学报, 2015, 36(7): 1505-1509.
[25] WANG J F, OUYANG Y X, CHEN G M.Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials[J]. International journal of energy research, 2001, 25(5): 439-447. DOI: 10.1002/er.695.
[26] ADINE H A, EL QARNIA H.Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied mathematical modelling, 2009, 33(4): 2132-2144. DOI: 10.1016/j.apm. 2008.05.016.
[27] 胡芃, 卢大杰, 赵盼盼, 等. 组合式相变材料最佳相变温度的热力学分析[J]. 化工学报, 2013, 64(7): 2322-2327. DOI: 10.3969/j.issn.0438-1157.2013.07.003.
[28] CUI H T.Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied thermal engineering, 2012, 39: 26-28. DOI: 10.1016/j.applthermaleng.2012.01.037.
[29] LAFDI K, MESALHY O, SHAIKH S.Experimental study on the influence of foam porosity and pore size on the melting of phase change materials[J]. Journal of applied physics, 2007, 102(8): 083549. DOI: 10.1063/1.2802183.
[30] 马预谱, 胡锦炎, 陈奇, 等. 金属材料增强的石蜡储热性能研究[J]. 工程热物理学报, 2016, 37(10): 2196-2201.
[31] 康亚盟, 刁彦华, 赵耀华, 等. 纳米复合相变蓄热材料的制备与特性[J]. 化工学报, 2016, 67(S1): 372-378. DOI: 10.11949/j.issn.0438-1157.20160619.
[32] 华维三, 章学来, 罗孝学, 等. 纳米金属/石蜡复合相变蓄热材料的实验研究[J]. 太阳能学报, 2017, 38(6): 1723-1728.
Outlines

/