Welcome to visit Advances in New and Renewable Energy!

Research on the Temperature of Charging Cable during High-Power Fast Charging to Electric Vehicles

  • ZHANG Wei-jiang ,
  • CAO Wen-jiong ,
  • ZENG Zhi-jian ,
  • HU Cheng-bin ,
  • JIANG Fang-ming
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. SANCO New Energy Technology Co. Ltd., Guangzhou 511300, China

Received date: 2018-09-09

  Revised date: 2018-12-26

  Online published: 2019-04-30

Abstract

During the process of high-power fast charging of electric vehicles, large current will pass through the charging cable, leading to a lot of heat generation. Excessive heat accumulation will increase the temperature, shortening the cable life, and even leading to physical damage to the cable and arousing safety accidents. In this paper, the thermal process of charging cable during charging was numerically studied. It was found that the safety of the cable was reliable when the charging current was less than the nominal value. When the charging power and current are further increased, the temperature at the insulation layer of the cable will exceed the safety upper limit and the cable cannot work safely, indicating additional auxiliary heat dissipation measures must be taken.

Cite this article

ZHANG Wei-jiang , CAO Wen-jiong , ZENG Zhi-jian , HU Cheng-bin , JIANG Fang-ming . Research on the Temperature of Charging Cable during High-Power Fast Charging to Electric Vehicles[J]. Advances in New and Renewable Energy, 2019 , 7(2) : 184 -189 . DOI: 10.3969/j.issn.2095-560X.2019.02.011

References

[1] 王凯. 新能源汽车配套设施设计研究[D]. 北京: 北京理工大学, 2015: 5-30.
[2] 刘洋, 卢明, 李刚. 浅析大功率充电未来发展趋势[J]. 汽车实用技术, 2018(14): 7-11.
[3] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车充电用电缆: GB/T 33594-2017[S]. 北京: 中国标准出版社, 2017.
[4] 王文渊, 赵钱育, 宫传播. 新能源电动汽车充电电缆的研制[J]. 中国新技术新产品, 2016(12): 70-71.
[5] 田超贺, 卢琛钰, 曲文波, 等. 电动汽车充电用电缆标准化分析[J]. 电器工业, 2013(11): 60-63.
[6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车传导充电用连接装置: GB/T 20234.1-2015[S]. 北京: 中国标准出版社, 2017.
[7] 杜冰冰. 电力电缆的温度场和载流量研究[D]. 郑州: 郑州大学, 2016: 29-41.
[8] 王有元, 陈仁刚, 陈伟根, 等. 有限元法计算地下电缆稳态温度场及其影响因素[J]. 高电压技术, 2009, 35(12): 3086-3092.
[9] 付永长, 张文斌, 陈涛, 等. 不规则排列电缆温度场及载流量计算[J]. 电网技术, 2010, 34(4): 173-176.
[10] 张平. 电子设备接触界面强化传热特性研究[D]. 南京: 南京理工大学, 2013: 34.
[11] 张爽. 动态硫化聚氯乙烯/丁腈橡胶热塑性弹性体性能及功能化研究[D]. 上海: 上海交通大学, 2013.
[12] RADHAKRISHNAN S, SONAWANE P S.Role of heat transfer and thermal conductivity in the crystallization behavior of polypropylene-containing additives: A phenomenological model[J]. Journal of applied polymer science, 2003, 89(11): 2994-2999. DOI: 10.1002/app.12422.
[13] 李庆领, 杨广志, 李涛. 水平圆管在大空间内自然对流换热的实验与数值分析[J]. 兰州理工大学学报, 2013, 39(2): 43-46.
[14] 沈雅钧. 导热系数与自然对流换热系数的综合测定[J]. 浙江海洋学院学报(自然科学版), 2000, 19(1): 84-86.
[15] 朱进容. 水平圆管自然对流换热的剪切干涉测温数值和实验研究[D]. 武汉: 华中科技大学, 2011.
[16] CHURCHILL S W, CHURCHILL R U.A comprehensive correlating equation for heat and component transfer by free convection[J]. AIChE journal, 1975, 21(3): 604-606. DOI: 10.1002/aic.690210330.
[17] KUEHN T H, GOLDSTEIN R J.Correlating equations for natural convection heat transfer between horizontal circular cylinders[J]. International journal of heat and mass transfer, 1976, 19(10): 1127-1134. DOI: 10.1016/0017-9310(76)90145-9.
[18] 冯静安, 唐小琦, 王卫兵, 等. 基于网格无关性与时间独立性的数值模拟可靠性验证方法的研究[J]. 石河子大学学报: 自然科学版, 2017, 35(1): 265-269.
Outlines

/