Welcome to visit Advances in New and Renewable Energy!

Characterization of Structural Changes in Lignin from Biomass Oxidation during Formic Acid Production

Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-02-22

  Revised date: 2019-03-05

  Online published: 2019-06-29

Abstract

Characterization of lignin structural changes in acid oxidation is one of the key factors affecting the high-value utilization of lignin. In this paper, the oxidation of pinewood in the system of NaVO3-DMSO-H2SO4 with O2 as oxidant was studied. The effects of reaction time, catalysts and solid-liquid ratio on lignin structure change were investigated. High performance liquid chromatography, fourier transform infrared spectroscopy, gel permeation chromatography, gas chromatography, and 2D-heteronculear single quantum coherence were employed to analyze residues and dissolved lignin fractions. Results showed that the yield of formic acid was 75.1% when the solid-liquid ratio was 1:50 in the system of NaVO3-DMSO-H2SO4 with H2SO4 concentration of 0.7wt.%. The lignin was oxidatively degraded into lignin fractions with Mw of 125-900 g/mol via the cleavage of C—O bonds. The aromatic structures in lignin fractions were oxidized into quinones.

Cite this article

LIU Jing, ZHU Yu-ting, LÜ Wei, WANG Chen-guang . Characterization of Structural Changes in Lignin from Biomass Oxidation during Formic Acid Production[J]. Advances in New and Renewable Energy, 2019 , 7(3) : 207 -215 . DOI: 10.3969/j.issn.2095-560X.2019.03.002

References

[1] HIMMEL M E, DING S Y, JOHNSON D K, et al.Biomass recalcitrance: Engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807. DOI: 10.1126/science.1137016.
[2] KESHWANI D R, CHENG J J.Switchgrass for bioethanol and other value-added applications: a review[J]. Bioresource technology, 2009, 100(4): 1515-1523. DOI: 10.1016/j.biortech.2008.09.035.
[3] CHUNDAWAT S P S, BECKHAM G T, HIMMEL M E, et al. Deconstruction of lignocellulosic biomass to fuels and chemicals[J]. Annual review of chemical and biomolecular engineering, 2011, 2: 121-145. DOI: 10.1146/annurev-chembioeng-061010-114205.
[4] ZAKZESKI J, BRUIJNINCX P C A, JONGERIUS A L, et al. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chemical reviews, 2010, 110(6): 3552-3599. DOI: 10.1021/cr900354u.
[5] NIU M G, HOU Y C, WU W Z, et al.Degradation of lignin in NaVO3-H2SO4 aqueous solution with oxygen[J]. Fuel processing technology, 2017, 161: 295-303. DOI: 10.1016/j.fuproc.2017.02.029.
[6] REES N V, COMPTON R G.Sustainable energy: a review of formic acid electrochemical fuel cells[J]. Journal of solid state electrochemistry, 2011, 15(10): 2095-2100. DOI: 10.1007/s10008-011-1398-4.
[7] LU T, HOU Y C, WU W Z, et al.Formic acid and acetic acid production from corn cob by catalytic oxidation using O2[J]. Fuel processing technology, 2018, 171: 133-139. DOI: 10.1016/j.fuproc.2017.11.010.
[8] TACCARDI N, ASSENBAUM D, BERGER M E M, et al. Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions[J]. Green chemistry, 2010, 12(7): 1150-1156. DOI: 10.1039/c002910f.
[9] TANG Z C, DENG W P, WANG Y L, et al.Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations[J]. Chemsuschem, 2014, 7(6): 1557-1567. DOI: 10.1002/cssc.201400150.
[10] WANG W H, NIU M G, HOU Y C, et al.Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen[J]. Green chemistry, 2014, 16(5): 2614-2618. DOI: 10.1039/c4gc00145a.
[11] WÖLFEL R, TACCARDI N, BÖSMANN A, et al. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen[J]. Green chemistry, 2011, 13(10): 2759-2763. DOI: 10.1039/c1gc15434f.
[12] REICHERT J, BRUNNER B, JESS A, et al.Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts - boosting FA selectivity by in-situ extraction[J]. Energy & environmental science, 2015, 8(10): 2985-2990. DOI: 10.1039/c5ee01706h.
[13] MCGINNIS G D, PRINCE S E, BIERMANN C J, et al.Wet oxidation of model carbohydrate compounds[J]. Carbohydrate research, 1984, 128(1): 51-60. DOI: 10.1016/0008-6215(84)85083-1.
[14] ALBERT J, WÖLFEL R, BÖSMANN A, et al. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators[J]. Energy & environmental science, 2012, 5(7): 7956-7962. DOI: 10.1039/c2ee21428h.
[15] SCHUTYSER W, KRUGER J S, ROBINSON A M, et al.Revisiting alkaline aerobic lignin oxidation[J]. Green chemistry, 2018, 20(16): 3828-3844. DOI: 10.1039/c8gc00502h.
[16] NIU M G, HOU Y C, REN S H, et al.Conversion of wheat straw into formic acid in NaVO3-H2SO4 aqueous solution with molecular oxygen[J]. Green chemistry, 2015, 17(1): 453-459. DOI: 10.1039/c4gc01440e.
[17] XIANG Q, LEE Y Y.Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide[J]. Applied biochemistry and biotechnology, 2000, 84(1/9): 153-162. DOI: 10.1385/ABAB:84-86:1-9:153.
[18] LU T, NIU M G, HOU Y C, et al.Catalytic oxidation of cellulose to formic acid in H5PV2Mo10O40 + H2SO4 aqueous solution with molecular oxygen[J]. Green chemistry, 2016, 18(17): 4725-4732. DOI: 10.1039/c6gc01271j.
[19] LU T, HOU Y C, WU W Z, et al.Catalytic oxidation of biomass to oxygenated chemicals with exceptionally high yields using H5PV2Mo10O40[J]. Fuel, 2018, 216: 572-578. DOI: 10.1016/j.fuel.2017.12.044.
[20] NIU M G, HOU Y C, REN S H, et al.The relationship between oxidation and hydrolysis in the conversion of cellulose in NaVO3-H2SO4 aqueous solution with O2[J]. Green chemistry, 2015, 17(1): 335-342. DOI: 10.1039/c4gc00970c.
[21] ZHANG P, GUO Y J, CHEN J B, et al.Streamlined hydrogen production from biomass[J]. Nature catalysis, 2018, 1(5): 332-338. DOI: 10.1038/s41929-018-0062-0.
[22] SLUITER A, HAMES B, RUIZ R, et al.Determination of structural carbohydrates and lignin in biomass[R]. Golden, Colo: Laboratory Analytical Procedure, 2008.
[23] OH S Y, YOO D I, SHIN Y, et al.Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J]. Carbohydrate research, 2005, 340(15): 2376-2391. DOI: 10.1016/j.carres.2005.08.007.
[24] TEJADO A, PEÑA C, LABIDI J, et al. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis[J]. Bioresource technology, 2007, 98(8): 1655-1663. DOI: 10.1016/j. biortech.2006.05.042.
[25] TIAN Z B, ZONG L, NIU R J, et al.Recovery and characterization of lignin from alkaline straw pulping black liquor: As feedstock for bio-oil research[J]. Journal of applied polymer science, 2015, 132(25): 42057. DOI: 10.1002/app.42057.
[26] MILLER J E, EVANS L, LITTLEWOLF A, et al.Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J]. Fuel, 1999, 78(11): 1363-1366. DOI: 10.1016/S0016-2361(99)00072-1.
[27] VÁZQUEZ G, ANTORRENA G, GONZÁLEZ J, et al. FTIR, 1H and 13C NMR characterization of acetosolv- solubilized pine and eucalyptus lignins[J]. Holzforschung, 1997, 51(2): 158-166. DOI: 10.1515/hfsg.1997.51.2.158.
[28] ZHANG H, LIU X D, LI J M, et al.Performances of several solvents on the cleavage of inter- and intramolecular linkages of lignin in corncob residue[J]. Chemsuschem, 2018, 11(9): 1494-1504. DOI: 10.1002/cssc.201800309.
[29] LI J, DING D J, DENG L, et al.Catalytic air oxidation of biomass-derived carbohydrates to formic acid[J]. Chemsuschem, 2012, 5(7): 1313-1318. DOI: 10.1002/cssc.201100466.
[30] LONG J X, LI X H, GUO B, et al.Simultaneous delignification and selective catalytic transformation of agricultural lignocellulose in cooperative ionic liquid pairs[J]. Green chemistry, 2012, 14(7): 1935-1941. DOI: 10.1039/c2gc35105f.
[31] JIANG Z C, ZHANG H, HE T, et al.Understanding the cleavage of inter- and intramolecular linkages in corncob residue for utilization of lignin to produce monophenols[J]. Green chemistry, 2016, 18(14): 4109-4115. DOI: 10.1039/c6gc00798h.
[32] ABDELKAFI F, AMMAR H, ROUSSEAU B, et al.Structural analysis of alfa grass (Stipa tenacissima L.) lignin obtained by acetic acid/formic acid delignification[J]. Biomacromolecules, 2011, 12(11): 3895-3902. DOI: 10.1021/bm2008179.
[33] HEIKKINEN S, TOIKKA M M, KARHUNEN P T, et al.Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin[J]. Journal of the american chemical society, 2003, 125(14): 4362-4367. DOI: 10.1021/ja029035k.
[34] LIITIÄ T M, MAUNU S L, HORTLING B, et al.Analysis of technical lignins by two- and three-dimensional NMR spectroscopy[J]. Journal of agricultural and food chemistry, 2003, 51(8): 2136-2143. DOI: 10.1021/jf0204349.
Outlines

/