Welcome to visit Advances in New and Renewable Energy!

Laboratory Study on Hydraulic Fracturing and Acoustic Emission Monitoring of Enhanced Geothermal System

  • LI Ting-liang ,
  • CAO Wen-jiong ,
  • WANG Yi-wei ,
  • GUO Jian ,
  • JIANG Fang-ming
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-01-03

  Revised date: 2019-02-23

  Online published: 2019-06-29

Abstract

Aiming at extraction and utilization of hot dry rock thermal energy, enhanced geothermal system (EGS) is now a research focus across the world. Besides constructing field test site to carry out experimental studies and technical demonstration, it is also necessary to carry out lab tests to study or verify relevant key technologies. Laboratory tests can provide theoretical basis and technical support for the construction of field sites. Herein, a self-developed indoor experimental EGS was built to experimental system, which can simulate the underground pressure and temperature environment. With this experimental setup, the hydraulic fracturing experiment of a 400 mm × 400 mm × 400 mm granite block was carried out. Based on the monitored acoustic emission data, fracture growth and propagation in the rock block and perform preliminary hydraulic connection test were analyze. Flow distribution in the four surrounding production wells was evaluated, and the hydraulic connectivity from injection well to each production well was explored. The results obtained can provide basic data for numerical simulation and may have some reference value for the construction of real field test sites.

Cite this article

LI Ting-liang , CAO Wen-jiong , WANG Yi-wei , GUO Jian , JIANG Fang-ming . Laboratory Study on Hydraulic Fracturing and Acoustic Emission Monitoring of Enhanced Geothermal System[J]. Advances in New and Renewable Energy, 2019 , 7(3) : 241 -248 . DOI: 10.3969/j.issn.2095-560X.2019.03.006

References

[1] TESTER J W, ANDERSON B J, BATCHELOR A S, et al.The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Washington, DC: Massachusetts Institute of Technology, 2006.
[2] 汪集暘, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. DOI: 10.3981/j.issn.1000-7857.2012.32.003.
[3] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. DOI: 10.3981/j.issn.1000-7857.2012.32.005.
[4] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. DOI: 10.3975/cagsb.2012.05.12.
[5] 郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综述[J]. 电力建设, 2014, 35(4): 10-24. DOI: 10.3969/j. issn.1000-7229.2014.04.003.
[6] 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13-21. DOI: 10.3981/j.issn.1000-7857.2015.19.001.
[7] VALLEY B, DEZAYES C, GENTER A.Multi-scale fracturing in the Soultz-sous-Forêts basement from borehole image analyses[C]//Proceedings of EHDRA Scientific Conference. France: EHDRA, 2007: 28.
[8] DEZAYES C, GENTER A, VALLEY B.Overview of the fracture network at different scales within the granite reservoir of the EGS Soultz site (Alsace, France)[C]// Proceedings of the World Geothermal Congress 2010. Bali, Indonesia: World Geothermal Congress, 2010: 13.
[9] SAUSSE J, DEZAYES C, DORBATH L, et al.3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles[J]. Comptes rendus geoscience, 2010, 342(7/8): 531-545. DOI: 10.1016/j.crte.2010.01.011.
[10] BRUEL D.Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: example of the Soultz-sous-Forets European hot fractured rock geothermal project, Rhine Graben, France[J]. Oil & gas science and technology, 2002, 57(5): 459-470. DOI: 10.2516/ogst:2002030.
[11] 王晓星, 吴能友, 张可霓, 等. 增强型地热系统开发过程中的多场耦合问题[J]. 水文地质工程地质, 2012, 39(2): 126-130. DOI: 10.16030/j.cnki.issn.1000-3665.2012.02.030.
[12] TARON J, ELSWORTH D.Coupled mechanical and chemical processes in engineered geothermal reservoirs with dynamic permeability[J]. International journal of rock mechanics and mining sciences, 2010, 47(8): 1339-1348. DOI: 10.1016/j.ijrmms.2010.08.021.
[13] CAO W J, HUANG W B, JIANG F M.Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction[J]. International journal of heat and mass transfer, 2016, 92: 1205-1217. DOI: 10.1016/j.ijheatmasstransfer.2015.09.081.
[14] CAO W J, HUANG W B, JIANG F M.A novel thermal-hydraulic-mechanical model for the enhanced geothermal system heat extraction[J]. International journal of heat and mass transfer, 2016, 100: 661-671. DOI: 10.1016/j.ijheatmasstransfer.2016.04.078.
[15] HICKS T W, PINE R J, WILLIS-RICHARDS J, et al.A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1996, 33(5): 499-511. DOI: 10.1016/0148-9062(96)00002-2.
[16] KOLDITZ O, CLAUSER C.Numerical simulation of flow and heat transfer in fractured crystalline rocks: application to the hot dry rock site in Rosemanowes (U.K.)[J]. Geothermics, 1998, 27(1): 1-23. DOI: 10.1016/S0375-6505(97)00021-7.
[17] YANG S Y, YEH H D.Modeling heat extraction from hot dry rock in a multi-well system[J]. Applied thermal engineering, 2009, 29(8/9): 1676-1681. DOI: 10.1016/j.applthermaleng.2008.07.020.
[18] KALININA E A, MCKENNA S A, HADGU T, et al.Analysis of the effects of heterogeneity on heat extraction in an EGS represented with the continuum fracture model[R]. Stanford, California: Sandia National Lab, 2012.
[19] SHAIK A R, RAHMAN S S, TRAN N H, et al.Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J]. Applied thermal engineering, 2011, 31(10): 1600-1606. DOI: 10.1016/j.applthermaleng.2011.01.038.
[20] JIANG F M, LUO L, CHEN J L.A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems[J]. International communications in heat and mass transfer, 2013, 41: 57-62. DOI: 10.1016/j.icheatmasstransfer.2012.11.003.
[21] JIANG F M, CHEN J L, HUANG W B, et al.A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy, 2014, 72: 300-310. DOI: 10.1016/j.energy.2014.05.038.
[22] CHEN D, WYBORN D.Habanero field tests in the Cooper Basin, Australia: a proof-of-concept for EGS[J]. Transactions-geothermal resources council, 2009, 33(1): 159-164.
[23] LLANOS E M, ZARROUK S J, HOGARTH R A.Simulation of the habanero enhanced geothermal system (EGS), Australia[C]//Proceedings of the World Geothermal Congress 2015. Melbourne, Australia: World Geothermal Congress, 2015.
[24] 李庭樑, 黄文博, 曹文炅, 等. EGS热储基于微震数据反演模化及其采热性能分析[J]. 化工学报, 2018, 69(12):
5001-5010. DOI: 10.11949/j.issn.0438-1157.20180769.
[25] ISHIDA T, CHEN Q, MIZUTA Y.Effect of injected water on hydraulic fracturing deduced from acoustic emission monitoring[M]//TALEBI S. Seismicity Associated with Mines, Reservoirs and Fluid Injections. Birkhäuser, Basel: Birkhäuser Verlag, 1997: 627-646.
[26] 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报, 2000, 19(S1): 868-872. DOI: 10.3321/j.issn:1000-6915.2000.z1.010.
[27] REINICKE A, RYBACKI E, STANCHITS S, et al. Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone-proppant systems[J]. Geochemistry, 2010, 70 Suppl 3: 107-117. DOI: 10.1016/j.chemer.2010. 05.016.
[28] 尹光志, 李铭辉, 许江, 等. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报, 2015, 34(12): 2436-2445. DOI: 10.13722/j.cnki.jrme.2015.0050.
[29] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(2): 407-414. DOI: 10.16285/j.rsm.2016. 02.013.
[30] 许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39. DOI: 10.3981/j.issn.1000-7857.2015.19.004.
[31] 黄炳香, 程庆迎, 刘长友, 等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报, 2011, 28(2): 167-173. DOI: 10.3969/j.issn.1673-3363.2011.02.001.
[32] 黄炳香. 煤岩体水力致裂弱化的理论与应用研究[J]. 煤炭学报, 2010, 35(10): 1765-1766. DOI: 10.13225/j. cnki.jccs.2010.10.020.
[33] ZANG A N, OYE V, JOUSSET P, et al.Analysis of induced seismicity in geothermal reservoirs-An overview[J]. Geothermics, 2014, 52: 6-21. DOI: 10.1016/j.geothermics. 2014.06.005.
[34] 李宏, 海江田秀志, 大西浩史. 雄胜高温岩体地热开发的数值计算进展[J]. 岩石力学与工程学报, 2003, 22(6): 965-968. DOI: 10.3321/j.issn:1000-6915.2003.06.014.
[35] SHAPIRO S A, HUENGES E, BORM G.Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site[J]. Geophysical journal international, 1997, 131(2): F15-F18. DOI: 10.1111/j.1365-246X.1997. tb01215.x.
Outlines

/