Welcome to visit Advances in New and Renewable Energy!

Research Advances on Hydrate-Based CO2 Separation and Capture

  • XIE Wen-jun ,
  • XU Chun-gang ,
  • LI Xiao-sen
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Gas Hydrate, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China;
    5. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2018-10-11

  Revised date: 2019-02-02

  Online published: 2019-06-29

Abstract

China is a country with coal as main energy source, and facing severe carbon emission reduction challenges. Compared with traditional gas separation technologies, hydrate-based carbon dioxide (CO2) separation and capture has advantages of environmental friendly, simple process and low energy consumption, which is considered to be promising in future. In this paper, the research advances on hydrate-based CO2 separation and capture were comprehensively reviewed from the aspects of thermodynamics, kinetics, microscopic analysis, separation process and equipment, comparison of cost. The hydrate equilibrium conditions and the effects of different additives on hydrate equilibrium conditions were discussed in detail. This review may provide some guidance for the further development of hydrate-based CO2 separation and capture.

Cite this article

XIE Wen-jun , XU Chun-gang , LI Xiao-sen . Research Advances on Hydrate-Based CO2 Separation and Capture[J]. Advances in New and Renewable Energy, 2019 , 7(3) : 277 -286 . DOI: 10.3969/j.issn.2095-560X.2019.03.011

References

[1] GOUGH C, MANDER S, HASZELDINE S, et al.A roadmap for carbon capture and storage in the UK[J]. International journal of greenhouse gas control, 2010, 4(1): 1-12. DOI: 10.1016/j.ijggc.2009.10.014.[2] AARON D, TSOURIS C. Separation of CO2 from flue gas: a review[J]. Separation science and technology, 2005, 40(1/3): 321-348. DOI: 10.1081/ss-200042244. [3] KOH C A, SLOAN E D. Natural gas hydrates: recent advances and challenges in energy and environmental applications[J]. AIChE journal, 2007, 53(7): 1636-1643. DOI: 10.1002/aic.11219. [4] SHIMADA W, SHIRO M, KONDO H, et al. Tetra-n- butylammonium bromide-water (1/38)[J]. Acta crystallographica section c-structural chemistry, 2005, C61: o65-o66. DOI: 10.1107/s0108270104032743.[5] ENGLEZOS P. Clathrate hydrates[J]. Industrial & engineering chemistry research, 1993, 32(7): 1251-1274. DOI: 10.1021/ie00019a001.[6] ESLAMIMANESH A, MOHAMMADI A H, RICHON D, et al. Application of gas hydrate formation in separation processes: a review of experimental studies[J]. The journal of chemical thermodynamics, 2012, 46: 62-71. DOI: 10.1016/j.jct.2011.10.006.[7] BARDUHN A J. The state of the crystallization processes for desalting saline waters[J]. Desalination. 1968, 5: 173-184. DOI: org/10.1016/S0011-9164(00)80212-X.[8] CARSON D B, KATZ D L. Natural gas hydrates[J]. Society of petroleum engineers, 1942, 146(1): 150-158. DOI: 10.2118/942150-g.[9] NG H J, ROBINSON D B. The measurement and prediction of hydrate formation in liquid hydrocarbon- water systems[J]. Industrial & engineering chemistry fundamentals, 1976, 15(4): 293-298. DOI: 10.1021/i160060a012.[10] WENDLAND M, HASSE H, MAURER G. Experimental pressure- temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide-water[J]. Journal of chemical & engineering data, 1999, 44(5): 901-906. DOI: 10.1021/je980208o.[11] SEO Y T, LEE H. Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures[J]. The journal of physical chemistry B, 2001, 105(41): 10084-10090. DOI: 10.1021/jp011095+.[12] TOHIDI B, DANESH A, TODD A C, et al. Hydrate-free zone for synthetic and real reservoir fluids in the presence of saline water[J]. Chemical engineering science, 1997, 52(19): 3257-3263. DOI: 10.1016/s0009-2509(97)00183-8.[13] NAKANO S, MORITOKI M, OHGAKI K. High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the CO2 hydrate system[J]. Journal of chemical & engineering data, 1998, 43(5): 807-810. DOI: 10.1021/je9800555.[14] DHOLABHAI P D, KALOGERAKIS N, BISHNOI P R. Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions[J]. Journal of chemical & engineering data, 1993, 38(4): 650-654. DOI: 10.1021/je00012a045.[15] DHOLABHAI P D, PARENT J S, BISHNOI P R. Carbon dioxide hydrate equilibrium conditions in aqueous solutions containing electrolytes and methanol using a new apparatus[J]. Industrial & engineering chemistry research, 1996, 35(3): 819-823. DOI: 10.1021/ie950136j. [16] ADISASMITO S, FRANK R J, SLOAN E D. Hydrates of carbon dioxide and methane mixtures[J]. Journal of chemical & engineering data, 1991, 36(1): 68-71. DOI: 10.1021/je00001a020. [17] LI X S, XU C G, CHEN Z Y, et al. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36(3): 1394-1403. DOI: 10.1016/j.energy.2011.01.034.[18] TOHIDI B, BURGASS R W, DANESH A, et al. Improving the accuracy of gas hydrate dissociation point measurements[J]. Annals of the New York academy of sciences, 2000, 912(1): 924-931. DOI: 10.1111/j.1749- 6632.2000.tb06846.x.[19] LEE H, LEE J W, KIM D Y, et al. Tuning clathrate hydrates for hydrogen storage[J]. Nature, 2005, 434(7034): 743-746. DOI: 10.1038/nature03457.[20] ARJMANDI M, CHAPOY A, TOHIDI B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of chemical & engineering data, 2007, 52(6): 2153-2158. DOI: 10.1021/je700144p. [21] HASHIMOTO S, SUGAHARA T, MORITOKI M, et al. Thermodynamic stability of hydrogen + tetra-n-butyl ammonium bromide mixed gas hydrate in nonstoichiometric aqueous solutions[J]. Chemical engineering science, 2008, 63(4): 1092-1097. DOI: 10.1016/j.ces.2007.11.001.[22] HERRI J M, KWATERSKI M. Derivation of a Langmuir type of model to describe the intrinsic growth rate of gas hydrates during crystallisation from gas mixtures[J]. Chemical engineering science, 2012, 81: 28-37. DOI: 10.1016/j.ces.2012.06.016.[23] DALMAZZONE D, KHARRAT M, LACHET V, et al. DSC and PVT measurements - methane and trichlorofluoro methane hydrate dissociation equilibria[J]. Journal of thermal analysis and calorimetry, 2002, 70(2): 493-505. DOI: 10.1023/a:1021632709287.[24] KHARRAT M, DALMAZZONE D. Experimental determination of stability conditions of methane hydrate in aqueous calcium chloride solutions using high pressure differential scanning calorimetry[J]. The journal of chemical thermodynamics, 2003, 35(9): 1489-1505. DOI: 10.1016/s0021-9614(03)00121-6.[25] LAFOND P G, OLCOTT K A, SLOAN E D, et al. Measurements of methane hydrate equilibrium in systems inhibited with NaCl and methanol[J]. The journal of chemical thermodynamics, 2012, 48: 1-6. DOI: 10.1016/j.jct.2011.12.023.[26] SUM A K, KOH C A, SLOAN E D. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial & engineering chemistry research, 2009, 48(16): 7457-7465. DOI: 10.1021/ie900679m.[27] KANG S P, LEE H, LEE C S, et al. Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran[J]. Fluid phase equilibria, 2001, 185(1/2): 101-109. DOI: 10.1016/s0378-3812(01)00460-5.[28] LINGA P, ADEYEMO A, ENGLEZOS P. Medium-pressure clathrate hydrate/membrane hybrid process for post- combustion capture of carbon dioxide[J]. Environmental science & technology, 2008, 42(1): 315-320. DOI: 10.1021/es071824k.[29] HASHIMOTO S, MURAYAMA S, SUGAHARA T, et al. Phase equilibria for H2 plus CO2 plus tetrahydrofuran plus water mixtures containing gas hydrates[J]. Journal of chemical & engineering data, 2006, 51(5): 1884-1886. DOI: 10.1021/je0602364. [30] LEE H J, LEE J D, LINGA P, et al. Gas hydrate formation process for pre-combustion capture of carbon dioxide[J]. Energy, 2010, 35(6): 2729-2733. DOI: 10.1016/j.energy.2009.05.026. [31] SHIN H J, LEE Y J, IM J H, et al. Thermodynamic stability, spectroscopic identification and cage occupation of binary CO2 clathrate hydrates[J]. Chemical engineering science, 2009, 64(24): 5125-5130. DOI: 10.1016/j.ces.2009.08.019.[32] LINGA P, KUMAR R, ENGLEZOS P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/ carbon dioxide gas mixtures[J]. Chemical engineering science, 2007, 62(16): 4268-4276. DOI: 10.1016/j.ces.2007.04.033.[33] KUMAR R, WU H J, ENGLEZOS P. Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane[J]. Fluid phase equilibria, 2006, 244(2): 167-171. DOI: 10.1016/j.fluid.2006.04.008.[34] KUMAR R, ENGLEZOS P, MOUDRAKOVSKI I, et al. Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production[J]. AIChE journal, 2009, 55(6): 1584-1594. DOI: 10.1002/aic.11844.[35] ZHANG J S, LEE J W. Equilibrium of hydrogen + cyclopentane and carbon dioxide + cyclopentane binary hydrates[J]. Journal of chemical & engineering data, 2009, 54(2): 659-661. DOI: 10.1021/je800219k.[36] ZHANG J S, YEDLAPALLI P, LEE J W. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2[J]. Chemical engineering science, 2009, 64(22): 4732-4736. DOI: 10.1016/j.ces.2009.04.041.[37] JEFFREY G A, JORDAN T H, MCMULLAN R K. Clathrate hydrates of some amines[J]. Science, 1967, 155(3763): 689-691. DOI: 10.1126/science.155.3763.689-a.[38] FOWLER D L, LOEBENSTEIN W V, PALL D B, et al. Some unusual hydrates of quaternary ammonium salts[J]. Journal of the American chemical society, 1940, 62(5): 1140-1142. DOI: 10.1021/ja01862a039.[39] SHIMADA W, EBINUMA T, OYAMA H, et al. Free-growth forms and growth kinetics of tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals[J]. Journal of crystal growth, 2005, 274(1/2): 246-250. DOI: 10.1016/j.jcrysgro.2004.09.071.[40] OYAMA H, SHIMADA W, EBINUMA T, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals[J]. Fluid phase equilibria, 2005, 234(1/2): 131-135. DOI: 10.1016/j.fluid.2005.06.005.[41] DUC N H, CHAUVY F, HERRI J M. CO2 capture by hydrate crystallization-a potential solution for gas emission of steelmaking industry[J]. Energy conversion and management, 2007, 48(4): 1313-1322. DOI: 10.1016/j.enconman.2006.09.024. [42] KAMATA Y, OYAMA H, SHIMADA W, et al. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate[J]. Japanese journal of applied physics, 2004, 43(1): 362-365. DOI: 10.1143/jjap.43.362.[43] LI S F, FAN S S, WANG J Q, et al. CO2 capture from binary mixture via forming hydrate with the help of tetra- n-butyl ammonium bromide[J]. Journal of natural gas chemistry, 2009, 18(1): 15-20. DOI: 10.1016/s1003-9953(08)60085-7.[44] LI J L, JIN J S, ZHANG Z T, et al. Equilibrium solubilities of a p-toluenesulfonamide and sulfanilamide mixture in supercritical carbon dioxide with and without ethanol[J]. Journal of supercritical fluids, 2010, 52(1): 11-17. DOI: 10.1016/j.supflu.2009.11.011.[45] XU C G, LI X S, LV Q N, et al. Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment[J]. Energy, 2012, 44(1): 358-366. DOI: 10.1016/j.energy.2012.06.021.[46] LI S F, FAN S S, WANG J Q, et al. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride)[J]. Journal of chemical & engineering data, 2010, 55(9): 3212-3215. DOI: 10.1021/je100059h.[47] LI X S, XU C G, CHEN Z Y, et al. Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride[J]. Energy, 2010, 35(9): 3902-3908. DOI: 10.1016/j.energy.2010.06.009.[48] LEE H H, AHN S H, NAM B U, et al. Thermodynamic Stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates[J]. Environmental science & technology, 2012, 46(7): 4184-4190. DOI: 10.1021/es203389k.[49] CHAPOY A, ANDERSON R, TOHIDI B. Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds[J]. Journal of the American chemical society, 2007, 129(4): 746-747. DOI: 10.1021/ja066883x. [50] DESCHAMPS J, DALMAZZONE D. Hydrogen Storage in Semiclathrate hydrates of tetrabutyl ammonium chloride and tetrabutyl phosphonium Bromide[J]. Journal of chemical & engineering data, 2010, 55(9): 3395-3399. DOI: 10.1021/je100146b.[51] ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate formation[J]. Chemical engineering science, 2000, 55(19): 4175-4187. DOI: 10.1016/s0009-2509(00)00072-5.[52] TAJIMA H, KIYONO F, YAMASAKI A. Direct observation of the effect of sodium dodecyl sulfate (SDS) on the gas hydrate formation process in a static mixer[J]. Energy & fuels, 2010, 24(1): 432-438. DOI: 10.1021/ef900863y.[53] ROSSI F, FILIPPONI M, CASTELLANI B. Investigation on a novel reactor for gas hydrate production[J]. Applied energy, 2012, 99: 167-172. DOI: 10.1016/j.apenergy.2012.05.005.[54] TORRE J P, DICHARRY C, RICAURTE M, et al. CO2 capture by hydrate formation in quiescent conditions: in search of efficient kinetic additives[J]. Energy procedia, 2011, 4: 621-628. DOI: 10.1016/j.egypro.2011.01.097.[55] LI X S, XU C G, CHEN Z Y, et al. Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns[J]. International journal of hydrogen energy, 2012, 37(1): 720-727. DOI: 10.1016/j.ijhydene.2011.09.053.[56] SLOAN E D. Clathrate hydrate measurements: microscopic, mesoscopic, and macroscopic[J]. The journal of chemical thermodynamics, 2003, 35(1): 41-53. DOI: 10.1016/S0021-9614(02)00302-6.[57] MCMULLAN R, JEFFREY G A. Hydrates of the tetra n-butyl and tetra i-amyl quaternary ammonium salts[J]. The journal of chemical physics, 1959, 31(5): 1231-1234. DOI: 10.1063/1.1730574.[58] MCMULLAN R K, JEFFREY G A. Polyhedral clathrate Hydrates. IX. structure of ethylene oxide hydrate[J]. The journal of chemical physics, 1965, 42(8): 2725-2732. DOI: 10.1063/1.1703228.[59] UDACHIN K A, RATCLIFFE C I, RIPMEESTER J A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-Ray diffraction measurements[J]. The journal of physical chemistry B, 2001, 105(19): 4200-4204. DOI: 10.1021/jp004389o. [60] UDACHIN K A, RATCLIFFE C I, RIPMEESTER J A. Structure, dynamics and ordering in structure I ether clathrate hydrates from single-crystal X-Ray diffraction and 2H NMR spectroscopy[J]. The journal of physical chemistry B, 2007, 111(39): 11366-11372. DOI: 10.1021/jp071342v.[61] UDACHIN K A, RIPMEESTER J A. A polymer guest transforms clathrate cages into channels: the single-crystal X-Ray structure of tetra-n-butylammonium polyacrylate hydrate, nBu4NPA-40 H2O[J]. Angewandte chemie international edition, 1999, 38(13/14): 1983-1984. DOI: 10.1002/(sici)1521-3773(19990712)38:13/14<1983::aid-anie1983>3.0.co;2-j.[62] KIM D Y, LEE H. Spectroscopic identification of the mixed hydrogen and carbon dioxide clathrate hydrate[J]. Journal of the American chemical society, 2005, 127(28): 9996-9997. DOI: 10.1021/ja0523183.[63] SEO Y T, LEE H. Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-Ray diffraction and 13C NMR spectroscopy[J]. The journal of physical chemistry B, 2004, 108(2): 530-534. DOI: 10.1021/jp0351371.[64] RAWN C J, RONDINONE A J, CHAKOUMAKOS B C, et al. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane[J]. Canadian journal of physics, 2003, 81(1/2): 431-438. DOI: 10.1139/p03-022.[65] HESTER K C, STROBEL T A, SLOAN E D, et al. Molecular hydrogen occupancy in binary THF-H2 clathrate hydrates by high resolution neutron diffraction[J]. The journal of physical chemistry B, 2006, 110(29): 14024-14027. DOI: 10.1021/jp063164w.[66] HALPERN Y, THIEU V, HENNING R W, et al. Time-resolved in situ neutron diffraction studies of gas hydrate: transformation of structure II (sII) to structure I (sI)[J]. Journal of the American chemical society, 2001, 123(51): 12826-12831. DOI: 10.1021/ja010280y.[67] STAYKOVA D K, KUHS W F, SALAMATIN A N, et al. Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model[J]. The journal of physical chemistry B, 2003, 107(37): 10299-10311. DOI: 10.1021/jp027787v.[68] TSE J S, POWELL B M, SEARS V F, et al. The lattice dynamics of clathrate hydrates. An incoherent inelastic neutron scattering study[J]. Chemical physics letters, 1993, 215(4): 383-387. DOI: 10.1016/0009-2614(93)85733-5.[69] GUTT C, BAUMERT J, PRESS W, et al. The vibrational properties of xenon hydrate: an inelastic incoherent neutron scattering study[J]. The journal of chemical physics, 2002, 116(9): 3795-3799. DOI: 10.1063/1.1446426.[70] HENNING R W, SCHULTZ A J, THIEU V, et al. Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice[J]. The journal of physical chemistry A, 2000, 104(21): 5066-5071. DOI: 10.1021/jp0001642.[71] PRINGSHEIM P, ROSEN B. Über den ramaneffekt[J]. Zeitschrift für physik, 1928, 50(11/12): 741-755. DOI: 10.1007/bf01339409.[72] KRISHNAN K S. The Raman effect in crystals[J]. Nature, 1928, 122(3074): 477-478. DOI: 10.1038/122477a0.[73] UCHIDA T, HIRANO T, EBINUMA T, et al. Raman spectroscopic determination of hydration number of methane hydrates[J]. AIChE journal, 1999, 45(12): 2641-2645. DOI: 10.1002/aic.690451220.[74] SUSILO R, RIPMEESTER J A, ENGLEZOS P, et al. Characterization of gas hydrates with PXRD, DSC, NMR, and Raman spectroscopy[J]. Chemical engineering science, 2007, 62(15): 3930-3939. DOI: 10.1016/j.ces.2007.03.045.[75] SCHICKS J M, ERZINGER J, ZIEMANN M A, et al. Raman Spectra of gas hydrates-differences and analogies to ice 1h and (gas saturated) water[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2005, 61(10): 2399-2403. DOI: 10.1016/j.saa.2005.02.019.[76] AL-OTAIBI F, CLARKE M, MAINI B, et al. Kinetics of structure II gas hydrate formation for propane and ethane using an in-situ particle size analyzer and a Raman spectrometer[J]. Chemical engineering science, 2011, 66(11): 2468-2474. DOI: 10.1016/j.ces.2011.03.012.[77] SAKAMOTO J, HASHIMOTO S, TSUDA T, et al. Thermodynamic and Raman spectroscopic studies on hydrogen + tetra-n-butyl ammonium fluoride semi-clathrate hydrates[J]. Chemical engineering science, 2008, 63(24): 5789-5794. DOI: 10.1016/j.ces.2008.08.026.[78] CHAZALLON B, FOCSA C, CHARLOU J L, et al. A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites[J]. Chemical geology, 2007, 244(1/2): 175-185. DOI: 10.1016/j.chemgeo.2007.06.012. [79] DAVIDSON D W, GARG S K, GOUGH S R, et al. Characterization of natural gas hydrates by nuclear magnetic resonance and dielectric relaxation[J]. Canadian journal of chemistry, 1977, 55(20): 3641-3650. DOI: 10.1139/v77-512.[80] PIETRASS T, GAEDE H C, BIFONE A, et al. Monitoring xenon clathrate hydrate formation on ice surfaces with optically enhanced 129Xe NMR[J]. Journal of the American chemical society, 1995, 117(28): 7520-7525. DOI: 10.1021/ja00133a025.[81] MOUDRAKOVSKI I L, SANCHEZ A A, RATCLIFFE C I, et al. Nucleation and growth of hydrates on ice surfaces: new insights from 129Xe NMR experiments with hyperpolarized xenon[J]. The journal of physical chemistry B, 2001, 105(49): 12338-12347. DOI: 10.1021/jp012419x. [82] MOUDRAKOVSKI I L, RATCLIFFE C I, RIPMEESTER J A. Probing transient hydrate structures with hyperpolarized 129Xe NMR spectroscopy: a metastable structure II hydrate of Xe[J]. Angewandte chemie international edition, 2001, 40(20): 3890-3892. DOI: 10.1002/1521-3773(20011015) 40:20<3890::aid-anie3890>3.0.co;2-t.[83] RIPMEESTER J A, RATCLIFFE C I. Applications of solid state NMR spectroscopy to the study of crystalline materials[M]//SEDDON K R, ZAWOROTKO M. Crystal Engineering: the Design and Application of Functional Solids. Kluwer Academic, 1999, 539: 251-271.[84] RIPMEESTER J A, RATCLIFFE C I. The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest[J]. Energy & fuels, 1998, 12(2): 197-200. DOI: 10.1021/ef970171y.[85] KINI R A, DEC S F, SLOAN E D. Methane plus propane structure II hydrate formation kinetics[J]. The journal of physical chemistry A, 2004, 108(44): 9550-9556. DOI: 10.1021/jp040301l.[86] SEO Y T, MOUDRAKOVSKI I L, RIPMEESTER J A, et al. Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels[J]. Environmental science & technology, 2005, 39(7): 2315-2319. DOI: 10.1021/es049269z.[87] LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. Journal of hazardous materials, 2007, 149(3): 625-629. DOI: 10.1016/j.jhazmat.2007.06.086.[88] XU C G, LI X S, CAI J, et al. Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas[J]. Journal of natural gas chemistry, 2012, 21(5): 501-507. DOI: 10.1016/s1003-9953(11)60397-6.[89] SUROVTSEVA D, AMIN R, BARIFCANI A. Design and operation of pilot plant for CO2 Capture from IGCC flue gases by combined cryogenic and hydrate method[J]. Chemical engineering research and design, 2011, 89(9): 1752-1757. DOI: 10.1016/j.cherd.2010.08.016.[90] KUMAR R, LINGA P, RIPMEESTER J A, et al. Two-stage clathrate hydrate/membrane process for pre- combustion capture of carbon dioxide and hydrogen[J]. Journal of environmental engineering, 2009, 135(6): 411-417. DOI: 10.1061/(asce)ee.1943-7870.0000002. [91] YANG D L, LE L A, MARTINEZ R J, et al. Kinetics of CO2 Hydrate formation in a continuous flow reactor[J]. Chemical engineering journal, 2011, 172(1): 144-157. DOI: 10.1016/j.cej.2011.05.082.[92] SZYMCEK P, MCCALLUM S D, TABOADA-SERRANO P, et al. A pilot-scale continuous-jet hydrate reactor[J]. Chemical engineering journal, 2008, 135(1/2): 71-77. DOI: 10.1016/j.cej.2007.03.029.[93] LINGA P, KUMAR R, LEE J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International journal of greenhouse gas control, 2010, 4(4): 630-637. DOI: 10.1016/j.ijggc.2009.12.014.[94] YANG D, LE L A, MARTINEZ R J, et al. Heat transfer during CO2 hydrate formation in a continuous flow reactor[J]. Energy & fuels, 2008, 22(4): 2649-2659. DOI: 10.1021/ef700749f.[95] WONG S, BIOLETTI R. Carbon dioxide separation technologies[C]//Carbon & Energy Management. Edmonton, Canada: Alberta Research Council, 2002. [96] ARESTA M, DIBENEDETTO A, QUARANTA E. Thermodynamics and Applications of CO2 Hydrates[M]// Reaction Mechanisms in Carbon Dioxide Conversion. Springer, 2016: 373-402. DOI: 10.1007/978-3-662-46831-9_10.
Outlines

/