[1] GOUGH C, MANDER S, HASZELDINE S, et al.A roadmap for carbon capture and storage in the UK[J]. International journal of greenhouse gas control, 2010, 4(1): 1-12. DOI: 10.1016/j.ijggc.2009.10.014.[2] AARON D, TSOURIS C. Separation of CO2 from flue gas: a review[J]. Separation science and technology, 2005, 40(1/3): 321-348. DOI: 10.1081/ss-200042244. [3] KOH C A, SLOAN E D. Natural gas hydrates: recent advances and challenges in energy and environmental applications[J]. AIChE journal, 2007, 53(7): 1636-1643. DOI: 10.1002/aic.11219. [4] SHIMADA W, SHIRO M, KONDO H, et al. Tetra-n- butylammonium bromide-water (1/38)[J]. Acta crystallographica section c-structural chemistry, 2005, C61: o65-o66. DOI: 10.1107/s0108270104032743.[5] ENGLEZOS P. Clathrate hydrates[J]. Industrial & engineering chemistry research, 1993, 32(7): 1251-1274. DOI: 10.1021/ie00019a001.[6] ESLAMIMANESH A, MOHAMMADI A H, RICHON D, et al. Application of gas hydrate formation in separation processes: a review of experimental studies[J]. The journal of chemical thermodynamics, 2012, 46: 62-71. DOI: 10.1016/j.jct.2011.10.006.[7] BARDUHN A J. The state of the crystallization processes for desalting saline waters[J]. Desalination. 1968, 5: 173-184. DOI: org/10.1016/S0011-9164(00)80212-X.[8] CARSON D B, KATZ D L. Natural gas hydrates[J]. Society of petroleum engineers, 1942, 146(1): 150-158. DOI: 10.2118/942150-g.[9] NG H J, ROBINSON D B. The measurement and prediction of hydrate formation in liquid hydrocarbon- water systems[J]. Industrial & engineering chemistry fundamentals, 1976, 15(4): 293-298. DOI: 10.1021/i160060a012.[10] WENDLAND M, HASSE H, MAURER G. Experimental pressure- temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide-water[J]. Journal of chemical & engineering data, 1999, 44(5): 901-906. DOI: 10.1021/je980208o.[11] SEO Y T, LEE H. Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures[J]. The journal of physical chemistry B, 2001, 105(41): 10084-10090. DOI: 10.1021/jp011095+.[12] TOHIDI B, DANESH A, TODD A C, et al. Hydrate-free zone for synthetic and real reservoir fluids in the presence of saline water[J]. Chemical engineering science, 1997, 52(19): 3257-3263. DOI: 10.1016/s0009-2509(97)00183-8.[13] NAKANO S, MORITOKI M, OHGAKI K. High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the CO2 hydrate system[J]. Journal of chemical & engineering data, 1998, 43(5): 807-810. DOI: 10.1021/je9800555.[14] DHOLABHAI P D, KALOGERAKIS N, BISHNOI P R. Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions[J]. Journal of chemical & engineering data, 1993, 38(4): 650-654. DOI: 10.1021/je00012a045.[15] DHOLABHAI P D, PARENT J S, BISHNOI P R. Carbon dioxide hydrate equilibrium conditions in aqueous solutions containing electrolytes and methanol using a new apparatus[J]. Industrial & engineering chemistry research, 1996, 35(3): 819-823. DOI: 10.1021/ie950136j. [16] ADISASMITO S, FRANK R J, SLOAN E D. Hydrates of carbon dioxide and methane mixtures[J]. Journal of chemical & engineering data, 1991, 36(1): 68-71. DOI: 10.1021/je00001a020. [17] LI X S, XU C G, CHEN Z Y, et al. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36(3): 1394-1403. DOI: 10.1016/j.energy.2011.01.034.[18] TOHIDI B, BURGASS R W, DANESH A, et al. Improving the accuracy of gas hydrate dissociation point measurements[J]. Annals of the New York academy of sciences, 2000, 912(1): 924-931. DOI: 10.1111/j.1749- 6632.2000.tb06846.x.[19] LEE H, LEE J W, KIM D Y, et al. Tuning clathrate hydrates for hydrogen storage[J]. Nature, 2005, 434(7034): 743-746. DOI: 10.1038/nature03457.[20] ARJMANDI M, CHAPOY A, TOHIDI B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of chemical & engineering data, 2007, 52(6): 2153-2158. DOI: 10.1021/je700144p. [21] HASHIMOTO S, SUGAHARA T, MORITOKI M, et al. Thermodynamic stability of hydrogen + tetra-n-butyl ammonium bromide mixed gas hydrate in nonstoichiometric aqueous solutions[J]. Chemical engineering science, 2008, 63(4): 1092-1097. DOI: 10.1016/j.ces.2007.11.001.[22] HERRI J M, KWATERSKI M. Derivation of a Langmuir type of model to describe the intrinsic growth rate of gas hydrates during crystallisation from gas mixtures[J]. Chemical engineering science, 2012, 81: 28-37. DOI: 10.1016/j.ces.2012.06.016.[23] DALMAZZONE D, KHARRAT M, LACHET V, et al. DSC and PVT measurements - methane and trichlorofluoro methane hydrate dissociation equilibria[J]. Journal of thermal analysis and calorimetry, 2002, 70(2): 493-505. DOI: 10.1023/a:1021632709287.[24] KHARRAT M, DALMAZZONE D. Experimental determination of stability conditions of methane hydrate in aqueous calcium chloride solutions using high pressure differential scanning calorimetry[J]. The journal of chemical thermodynamics, 2003, 35(9): 1489-1505. DOI: 10.1016/s0021-9614(03)00121-6.[25] LAFOND P G, OLCOTT K A, SLOAN E D, et al. Measurements of methane hydrate equilibrium in systems inhibited with NaCl and methanol[J]. The journal of chemical thermodynamics, 2012, 48: 1-6. DOI: 10.1016/j.jct.2011.12.023.[26] SUM A K, KOH C A, SLOAN E D. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial & engineering chemistry research, 2009, 48(16): 7457-7465. DOI: 10.1021/ie900679m.[27] KANG S P, LEE H, LEE C S, et al. Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran[J]. Fluid phase equilibria, 2001, 185(1/2): 101-109. DOI: 10.1016/s0378-3812(01)00460-5.[28] LINGA P, ADEYEMO A, ENGLEZOS P. Medium-pressure clathrate hydrate/membrane hybrid process for post- combustion capture of carbon dioxide[J]. Environmental science & technology, 2008, 42(1): 315-320. DOI: 10.1021/es071824k.[29] HASHIMOTO S, MURAYAMA S, SUGAHARA T, et al. Phase equilibria for H2 plus CO2 plus tetrahydrofuran plus water mixtures containing gas hydrates[J]. Journal of chemical & engineering data, 2006, 51(5): 1884-1886. DOI: 10.1021/je0602364. [30] LEE H J, LEE J D, LINGA P, et al. Gas hydrate formation process for pre-combustion capture of carbon dioxide[J]. Energy, 2010, 35(6): 2729-2733. DOI: 10.1016/j.energy.2009.05.026. [31] SHIN H J, LEE Y J, IM J H, et al. Thermodynamic stability, spectroscopic identification and cage occupation of binary CO2 clathrate hydrates[J]. Chemical engineering science, 2009, 64(24): 5125-5130. DOI: 10.1016/j.ces.2009.08.019.[32] LINGA P, KUMAR R, ENGLEZOS P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/ carbon dioxide gas mixtures[J]. Chemical engineering science, 2007, 62(16): 4268-4276. DOI: 10.1016/j.ces.2007.04.033.[33] KUMAR R, WU H J, ENGLEZOS P. Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane[J]. Fluid phase equilibria, 2006, 244(2): 167-171. DOI: 10.1016/j.fluid.2006.04.008.[34] KUMAR R, ENGLEZOS P, MOUDRAKOVSKI I, et al. Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production[J]. AIChE journal, 2009, 55(6): 1584-1594. DOI: 10.1002/aic.11844.[35] ZHANG J S, LEE J W. Equilibrium of hydrogen + cyclopentane and carbon dioxide + cyclopentane binary hydrates[J]. Journal of chemical & engineering data, 2009, 54(2): 659-661. DOI: 10.1021/je800219k.[36] ZHANG J S, YEDLAPALLI P, LEE J W. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2[J]. Chemical engineering science, 2009, 64(22): 4732-4736. DOI: 10.1016/j.ces.2009.04.041.[37] JEFFREY G A, JORDAN T H, MCMULLAN R K. Clathrate hydrates of some amines[J]. Science, 1967, 155(3763): 689-691. DOI: 10.1126/science.155.3763.689-a.[38] FOWLER D L, LOEBENSTEIN W V, PALL D B, et al. Some unusual hydrates of quaternary ammonium salts[J]. Journal of the American chemical society, 1940, 62(5): 1140-1142. DOI: 10.1021/ja01862a039.[39] SHIMADA W, EBINUMA T, OYAMA H, et al. Free-growth forms and growth kinetics of tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals[J]. Journal of crystal growth, 2005, 274(1/2): 246-250. DOI: 10.1016/j.jcrysgro.2004.09.071.[40] OYAMA H, SHIMADA W, EBINUMA T, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals[J]. Fluid phase equilibria, 2005, 234(1/2): 131-135. DOI: 10.1016/j.fluid.2005.06.005.[41] DUC N H, CHAUVY F, HERRI J M. CO2 capture by hydrate crystallization-a potential solution for gas emission of steelmaking industry[J]. Energy conversion and management, 2007, 48(4): 1313-1322. DOI: 10.1016/j.enconman.2006.09.024. [42] KAMATA Y, OYAMA H, SHIMADA W, et al. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate[J]. Japanese journal of applied physics, 2004, 43(1): 362-365. DOI: 10.1143/jjap.43.362.[43] LI S F, FAN S S, WANG J Q, et al. CO2 capture from binary mixture via forming hydrate with the help of tetra- n-butyl ammonium bromide[J]. Journal of natural gas chemistry, 2009, 18(1): 15-20. DOI: 10.1016/s1003-9953(08)60085-7.[44] LI J L, JIN J S, ZHANG Z T, et al. Equilibrium solubilities of a p-toluenesulfonamide and sulfanilamide mixture in supercritical carbon dioxide with and without ethanol[J]. Journal of supercritical fluids, 2010, 52(1): 11-17. DOI: 10.1016/j.supflu.2009.11.011.[45] XU C G, LI X S, LV Q N, et al. Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment[J]. Energy, 2012, 44(1): 358-366. DOI: 10.1016/j.energy.2012.06.021.[46] LI S F, FAN S S, WANG J Q, et al. Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride)[J]. Journal of chemical & engineering data, 2010, 55(9): 3212-3215. DOI: 10.1021/je100059h.[47] LI X S, XU C G, CHEN Z Y, et al. Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride[J]. Energy, 2010, 35(9): 3902-3908. DOI: 10.1016/j.energy.2010.06.009.[48] LEE H H, AHN S H, NAM B U, et al. Thermodynamic Stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates[J]. Environmental science & technology, 2012, 46(7): 4184-4190. DOI: 10.1021/es203389k.[49] CHAPOY A, ANDERSON R, TOHIDI B. Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds[J]. Journal of the American chemical society, 2007, 129(4): 746-747. DOI: 10.1021/ja066883x. [50] DESCHAMPS J, DALMAZZONE D. Hydrogen Storage in Semiclathrate hydrates of tetrabutyl ammonium chloride and tetrabutyl phosphonium Bromide[J]. Journal of chemical & engineering data, 2010, 55(9): 3395-3399. DOI: 10.1021/je100146b.[51] ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate formation[J]. Chemical engineering science, 2000, 55(19): 4175-4187. DOI: 10.1016/s0009-2509(00)00072-5.[52] TAJIMA H, KIYONO F, YAMASAKI A. Direct observation of the effect of sodium dodecyl sulfate (SDS) on the gas hydrate formation process in a static mixer[J]. Energy & fuels, 2010, 24(1): 432-438. DOI: 10.1021/ef900863y.[53] ROSSI F, FILIPPONI M, CASTELLANI B. Investigation on a novel reactor for gas hydrate production[J]. Applied energy, 2012, 99: 167-172. DOI: 10.1016/j.apenergy.2012.05.005.[54] TORRE J P, DICHARRY C, RICAURTE M, et al. CO2 capture by hydrate formation in quiescent conditions: in search of efficient kinetic additives[J]. Energy procedia, 2011, 4: 621-628. DOI: 10.1016/j.egypro.2011.01.097.[55] LI X S, XU C G, CHEN Z Y, et al. Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns[J]. International journal of hydrogen energy, 2012, 37(1): 720-727. DOI: 10.1016/j.ijhydene.2011.09.053.[56] SLOAN E D. Clathrate hydrate measurements: microscopic, mesoscopic, and macroscopic[J]. The journal of chemical thermodynamics, 2003, 35(1): 41-53. DOI: 10.1016/S0021-9614(02)00302-6.[57] MCMULLAN R, JEFFREY G A. Hydrates of the tetra n-butyl and tetra i-amyl quaternary ammonium salts[J]. The journal of chemical physics, 1959, 31(5): 1231-1234. DOI: 10.1063/1.1730574.[58] MCMULLAN R K, JEFFREY G A. Polyhedral clathrate Hydrates. IX. structure of ethylene oxide hydrate[J]. The journal of chemical physics, 1965, 42(8): 2725-2732. DOI: 10.1063/1.1703228.[59] UDACHIN K A, RATCLIFFE C I, RIPMEESTER J A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-Ray diffraction measurements[J]. The journal of physical chemistry B, 2001, 105(19): 4200-4204. DOI: 10.1021/jp004389o. [60] UDACHIN K A, RATCLIFFE C I, RIPMEESTER J A. Structure, dynamics and ordering in structure I ether clathrate hydrates from single-crystal X-Ray diffraction and 2H NMR spectroscopy[J]. The journal of physical chemistry B, 2007, 111(39): 11366-11372. DOI: 10.1021/jp071342v.[61] UDACHIN K A, RIPMEESTER J A. A polymer guest transforms clathrate cages into channels: the single-crystal X-Ray structure of tetra-n-butylammonium polyacrylate hydrate, nBu4NPA-40 H2O[J]. Angewandte chemie international edition, 1999, 38(13/14): 1983-1984. DOI: 10.1002/(sici)1521-3773(19990712)38:13/14<1983::aid-anie1983>3.0.co;2-j.[62] KIM D Y, LEE H. Spectroscopic identification of the mixed hydrogen and carbon dioxide clathrate hydrate[J]. Journal of the American chemical society, 2005, 127(28): 9996-9997. DOI: 10.1021/ja0523183.[63] SEO Y T, LEE H. Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-Ray diffraction and 13C NMR spectroscopy[J]. The journal of physical chemistry B, 2004, 108(2): 530-534. DOI: 10.1021/jp0351371.[64] RAWN C J, RONDINONE A J, CHAKOUMAKOS B C, et al. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane[J]. Canadian journal of physics, 2003, 81(1/2): 431-438. DOI: 10.1139/p03-022.[65] HESTER K C, STROBEL T A, SLOAN E D, et al. Molecular hydrogen occupancy in binary THF-H2 clathrate hydrates by high resolution neutron diffraction[J]. The journal of physical chemistry B, 2006, 110(29): 14024-14027. DOI: 10.1021/jp063164w.[66] HALPERN Y, THIEU V, HENNING R W, et al. Time-resolved in situ neutron diffraction studies of gas hydrate: transformation of structure II (sII) to structure I (sI)[J]. Journal of the American chemical society, 2001, 123(51): 12826-12831. DOI: 10.1021/ja010280y.[67] STAYKOVA D K, KUHS W F, SALAMATIN A N, et al. Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model[J]. The journal of physical chemistry B, 2003, 107(37): 10299-10311. DOI: 10.1021/jp027787v.[68] TSE J S, POWELL B M, SEARS V F, et al. The lattice dynamics of clathrate hydrates. An incoherent inelastic neutron scattering study[J]. Chemical physics letters, 1993, 215(4): 383-387. DOI: 10.1016/0009-2614(93)85733-5.[69] GUTT C, BAUMERT J, PRESS W, et al. The vibrational properties of xenon hydrate: an inelastic incoherent neutron scattering study[J]. The journal of chemical physics, 2002, 116(9): 3795-3799. DOI: 10.1063/1.1446426.[70] HENNING R W, SCHULTZ A J, THIEU V, et al. Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice[J]. The journal of physical chemistry A, 2000, 104(21): 5066-5071. DOI: 10.1021/jp0001642.[71] PRINGSHEIM P, ROSEN B. Über den ramaneffekt[J]. Zeitschrift für physik, 1928, 50(11/12): 741-755. DOI: 10.1007/bf01339409.[72] KRISHNAN K S. The Raman effect in crystals[J]. Nature, 1928, 122(3074): 477-478. DOI: 10.1038/122477a0.[73] UCHIDA T, HIRANO T, EBINUMA T, et al. Raman spectroscopic determination of hydration number of methane hydrates[J]. AIChE journal, 1999, 45(12): 2641-2645. DOI: 10.1002/aic.690451220.[74] SUSILO R, RIPMEESTER J A, ENGLEZOS P, et al. Characterization of gas hydrates with PXRD, DSC, NMR, and Raman spectroscopy[J]. Chemical engineering science, 2007, 62(15): 3930-3939. DOI: 10.1016/j.ces.2007.03.045.[75] SCHICKS J M, ERZINGER J, ZIEMANN M A, et al. Raman Spectra of gas hydrates-differences and analogies to ice 1h and (gas saturated) water[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2005, 61(10): 2399-2403. DOI: 10.1016/j.saa.2005.02.019.[76] AL-OTAIBI F, CLARKE M, MAINI B, et al. Kinetics of structure II gas hydrate formation for propane and ethane using an in-situ particle size analyzer and a Raman spectrometer[J]. Chemical engineering science, 2011, 66(11): 2468-2474. DOI: 10.1016/j.ces.2011.03.012.[77] SAKAMOTO J, HASHIMOTO S, TSUDA T, et al. Thermodynamic and Raman spectroscopic studies on hydrogen + tetra-n-butyl ammonium fluoride semi-clathrate hydrates[J]. Chemical engineering science, 2008, 63(24): 5789-5794. DOI: 10.1016/j.ces.2008.08.026.[78] CHAZALLON B, FOCSA C, CHARLOU J L, et al. A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites[J]. Chemical geology, 2007, 244(1/2): 175-185. DOI: 10.1016/j.chemgeo.2007.06.012. [79] DAVIDSON D W, GARG S K, GOUGH S R, et al. Characterization of natural gas hydrates by nuclear magnetic resonance and dielectric relaxation[J]. Canadian journal of chemistry, 1977, 55(20): 3641-3650. DOI: 10.1139/v77-512.[80] PIETRASS T, GAEDE H C, BIFONE A, et al. Monitoring xenon clathrate hydrate formation on ice surfaces with optically enhanced 129Xe NMR[J]. Journal of the American chemical society, 1995, 117(28): 7520-7525. DOI: 10.1021/ja00133a025.[81] MOUDRAKOVSKI I L, SANCHEZ A A, RATCLIFFE C I, et al. Nucleation and growth of hydrates on ice surfaces: new insights from 129Xe NMR experiments with hyperpolarized xenon[J]. The journal of physical chemistry B, 2001, 105(49): 12338-12347. DOI: 10.1021/jp012419x. [82] MOUDRAKOVSKI I L, RATCLIFFE C I, RIPMEESTER J A. Probing transient hydrate structures with hyperpolarized 129Xe NMR spectroscopy: a metastable structure II hydrate of Xe[J]. Angewandte chemie international edition, 2001, 40(20): 3890-3892. DOI: 10.1002/1521-3773(20011015) 40:20<3890::aid-anie3890>3.0.co;2-t.[83] RIPMEESTER J A, RATCLIFFE C I. Applications of solid state NMR spectroscopy to the study of crystalline materials[M]//SEDDON K R, ZAWOROTKO M. Crystal Engineering: the Design and Application of Functional Solids. Kluwer Academic, 1999, 539: 251-271.[84] RIPMEESTER J A, RATCLIFFE C I. The diverse nature of dodecahedral cages in clathrate hydrates as revealed by 129Xe and 13C NMR spectroscopy: CO2 as a small-cage guest[J]. Energy & fuels, 1998, 12(2): 197-200. DOI: 10.1021/ef970171y.[85] KINI R A, DEC S F, SLOAN E D. Methane plus propane structure II hydrate formation kinetics[J]. The journal of physical chemistry A, 2004, 108(44): 9550-9556. DOI: 10.1021/jp040301l.[86] SEO Y T, MOUDRAKOVSKI I L, RIPMEESTER J A, et al. Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels[J]. Environmental science & technology, 2005, 39(7): 2315-2319. DOI: 10.1021/es049269z.[87] LINGA P, KUMAR R, ENGLEZOS P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. Journal of hazardous materials, 2007, 149(3): 625-629. DOI: 10.1016/j.jhazmat.2007.06.086.[88] XU C G, LI X S, CAI J, et al. Hydrate-based carbon dioxide capture from simulated integrated gasification combined cycle gas[J]. Journal of natural gas chemistry, 2012, 21(5): 501-507. DOI: 10.1016/s1003-9953(11)60397-6.[89] SUROVTSEVA D, AMIN R, BARIFCANI A. Design and operation of pilot plant for CO2 Capture from IGCC flue gases by combined cryogenic and hydrate method[J]. Chemical engineering research and design, 2011, 89(9): 1752-1757. DOI: 10.1016/j.cherd.2010.08.016.[90] KUMAR R, LINGA P, RIPMEESTER J A, et al. Two-stage clathrate hydrate/membrane process for pre- combustion capture of carbon dioxide and hydrogen[J]. Journal of environmental engineering, 2009, 135(6): 411-417. DOI: 10.1061/(asce)ee.1943-7870.0000002. [91] YANG D L, LE L A, MARTINEZ R J, et al. Kinetics of CO2 Hydrate formation in a continuous flow reactor[J]. Chemical engineering journal, 2011, 172(1): 144-157. DOI: 10.1016/j.cej.2011.05.082.[92] SZYMCEK P, MCCALLUM S D, TABOADA-SERRANO P, et al. A pilot-scale continuous-jet hydrate reactor[J]. Chemical engineering journal, 2008, 135(1/2): 71-77. DOI: 10.1016/j.cej.2007.03.029.[93] LINGA P, KUMAR R, LEE J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International journal of greenhouse gas control, 2010, 4(4): 630-637. DOI: 10.1016/j.ijggc.2009.12.014.[94] YANG D, LE L A, MARTINEZ R J, et al. Heat transfer during CO2 hydrate formation in a continuous flow reactor[J]. Energy & fuels, 2008, 22(4): 2649-2659. DOI: 10.1021/ef700749f.[95] WONG S, BIOLETTI R. Carbon dioxide separation technologies[C]//Carbon & Energy Management. Edmonton, Canada: Alberta Research Council, 2002. [96] ARESTA M, DIBENEDETTO A, QUARANTA E. Thermodynamics and Applications of CO2 Hydrates[M]// Reaction Mechanisms in Carbon Dioxide Conversion. Springer, 2016: 373-402. DOI: 10.1007/978-3-662-46831-9_10.