Hydrogen energy storage technology is considered as an effective and promising solution to abandoning power due to intermittency and uncontrollability of renewable energy resources. In this paper, a theoretical model of direct coupling system of photovoltaic and proton exchange membrane (PEM) water electrolyzer (WE) was established to optimize the operating conditions. Results showed that the changeable weather can cause the deviation between system operating points and the PV maximum power points which decreased the solar energy utilization efficiency. Based on the model, two optimization methods were proposed, “roughly adjust” can be done by matching the combination of PV modules and number of water electrolyzer cells, and then “precise adjust” by changing the operating temperature of water electrolyzer to obtain minimum energy loss. This work can be used as operation strategy for PV-PEM water electrolyzer direct coupling systems.
GUO Chang-qing
,
YI Li-qi
,
YAN Chang-feng
,
SHI Yan
,
WANG Zhi-da
. Optimization of Photovoltaic-PEM Electrolyzer Direct Coupling Systems[J]. Advances in New and Renewable Energy, 2019
, 7(3)
: 287
-294
.
DOI: 10.3969/j.issn.2095-560X.2019.03.012
[1] 国家能源局. 2017年度全国可再生能源电力发展监测评价报告[R]. 北京: 国家能源局, 2018.
[2] HAMEER S, VAN NIEKERK J L. A review of large-scale electrical energy storage[J]. International journal of energy research, 2015, 39(9): 1179-1195. DOI: 10.1002/er.3294.
[3] GARCÍA-VALVERDE R, ESPINOSA N, URBINA A. Optimized method for photovoltaic-water electrolyser direct coupling[J]. International journal of hydrogen energy, 2011, 36(17): 10574-10586. DOI: 10.1016/j.ijhydene.2011.05.179.
[4] TURNER J, SVERDRUP G, MANN M K, et al.Renewable hydrogen production[J]. International journal of energy research, 2008, 32(5): 379-407. DOI: 10.1002/er.1372.
[5] WALKER S B, MUKHERJEE U, FOWLER M, et al.Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative[J]. International journal of hydrogen energy, 2016, 41(19): 7717-7731. DOI: 10.1016/j.ijhydene.2015.09.008.
[6] AKYUZ E, COSKUN C, OKTAY Z, et al.Hydrogen production probability distributions for a PV-electrolyser system[J]. International journal of hydrogen energy, 2011, 36(17): 11292-11299. DOI: 10.1016/j.ijhydene.2010.11.125.
[7] CLARKE R E, GIDDEY S, BADWAL S P S. Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source[J]. International journal of hydrogen energy, 2010, 35(3): 928-935. DOI: 10.1016/j.ijhydene.2009.11.100.
[8] LIU Z X, QIU Z M, LUO Y, et al.Operation of first solar-hydrogen system in China[J]. International journal of hydrogen energy, 2010, 35(7): 2762-2766. DOI: 10.1016/j.ijhydene.2009.05.027.
[9] ZHOU K L, FERREIRA J A, DE HAAN S W H. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems[J]. International journal of hydrogen energy, 2008, 33(2): 477-489. DOI: 10.1016/j.ijhydene.2007.09.027.
[10] ARRIAGA L G, MARTÍNEZ W, CANO U, et al. Direct coupling of a solar-hydrogen system in Mexico[J]. International journal of hydrogen energy, 2007, 32(13): 2247-2252. DOI: 10.1016/j.ijhydene.2006.10.067.
[11] PAUL B, ANDREWS J.Optimal coupling of PV arrays to PEM electrolysers in solar-hydrogen systems for remote area power supply[J]. International journal of hydrogen energy, 2008, 33(2): 490-498. DOI: 10.1016/j. ijhydene.2007.10.040.
[12] MAROUFMASHAT A, SAYEDIN F, KHAVAS S S.An imperialist competitive algorithm approach for multi- objective optimization of direct coupling photovoltaic- electrolyzer systems[J]. International journal of hydrogen energy, 2014, 39(33): 18743-18757. DOI: 10.1016/j. ijhydene.2014.08.125.
[13] SAYEDIN F, MAROUFMASHAT A, SATTARI S, et al.Optimization of Photovoltaic Electrolyzer Hybrid systems; taking into account the effect of climate conditions[J]. Energy conversion and management, 2016, 118: 438-449. DOI: 10.1016/j.enconman.2016.04.021.
[14] MAEDA T, ITO H, HASEGAWA Y, et al.Study on control method of the stand-alone direct-coupling photovoltaic-water electrolyzer[J]. International journal of hydrogen energy, 2012, 37(6): 4819-4828. DOI: 10.1016/j.ijhydene.2011.12.013.
[15] BILGEN E.Solar hydrogen from photovoltaic-electrolyzer systems[J]. Energy conversion and management, 2001, 42(9): 1047-1057. DOI: 10.1016/S0196-8904(00)00131-X.
[16] HASAN M A, PARIDA S K.An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint[J]. Renewable and sustainable energy reviews, 2016, 60: 75-83. DOI: 10.1016/j.rser. 2016.01.087.
[17] 彭乐乐, 孙以泽, 林学龙, 等. 工程用太阳电池模型及参数确定法[J]. 太阳能学报, 2012, 33(2): 283-286.
[18] 廖志凌, 阮新波. 任意光强和温度下的硅太阳电池非线性工程简化数学模型[J]. 太阳能学报, 2009, 30(4): 430-435.
[19] SAYEDIN F, MAROUFMASHAT A, ROSHANDEL R, et al.Optimal design and operation of a photovoltaic- electrolyser system using particle swarm optimisation[J]. International journal of sustainable energy, 2016, 35(6): 566-582. DOI: 10.1080/14786451.2014.922974.
[20] CHOI P, BESSARABOV D G, DATTA R.A simple model for solid polymer electrolyte (SPE) water electrolysis[J]. Solid state ionics, 2004, 175(1/4): 535-539. DOI: 10.1016/j.ssi.2004.01.076.
[21] 霍立琴, 杨春信, 史乔升, 等. PEM电解水芯体电化学特性分析[J]. 航天医学与医学工程, 2015, 28(1): 39-43.
[22] BIAKU C Y, DALE N V, MANN M D, et al.A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer[J]. International journal of hydrogen energy, 2008, 33(16): 4247-4254. DOI: 10.1016/j.ijhydene.2008. 06.006.
[23] NI M, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy conversion and management, 2008, 49(10): 2748-2756. DOI: 10.1016/j.enconman.2008.03.018.