Welcome to visit Advances in New and Renewable Energy!

Research and Development of Titania-Based Nanostructured Materials for High Performance Thermoelectric Applications

  • MIAO Lei ,
  • LIU Cheng-yan ,
  • ZHOU Jian-hua ,
  • ZHANG Ming
Expand
  • 1. Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Department of Physics, Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan

Received date: 2013-07-12

  Revised date: 2013-10-14

  Online published: 2013-10-31

Abstract

Thermoelectric materials, which can convert heat directly into electricity efficiently and vice versa, offer a new method to refrigeration and power generation. They therefore play an important role on solving intensified energy crisis and environmental problems. In traditional bulk thermoelectric materials, it is difficult to further improve their figure of merit (ZT) because of strong correlation between the physical parameters which determine the thermoelectric performance. Thermoelectric metal oxides are ideal candidates which can be used at middle and high temperatures, due to their good thermal stability. If the thermoelectric properties of titania-based materials can be improved, it would make an excellent thermoelectric material owing to its non-toxicity, good chemical and thermal stability, natural abundance, and simple preparation process. Nanotechnology provides a dominant approach to improve the thermoelectric properties in the last twenty years, resulting from its remarkable effect to decrease the thermal conductivity. Meanwhile, to enhance the electron-related power factor by tuning the interface and chemical composition is also an important method to further increase the thermoelectric properties. In this paper, we reviewed our recent research results on titania-based thermoelectric materials. Firstly,  through the experimental observation of large Seebeck coefficient of titanate nanotubes, we considered that the two correlated parameters, namely electrical conductivity and thermal conductivity,can be tailored separately by using the peculiar tube morphology and layer structure of one-dimensional materials; Secondly, by studying the different scattering effect of carriers and phonons at the interface by synthesizing titania-based nanocomposites, we proposed to enhance the thermoelectric properties by designing electron energy filtering; Thirdly, we found that nanostructured and chemically tuned titania-based materials could be prepared by using chemical methods such as urea combustion and high-temperature sintering and thus would help us to cognize the transport response of electron and phonon to chemical composition and interface. Finally, the asymmetrical carrier transport theory was introduced, which possibly provided an important way to notably enhance the power factor of thermoelectric materials.

Cite this article

MIAO Lei , LIU Cheng-yan , ZHOU Jian-hua , ZHANG Ming . Research and Development of Titania-Based Nanostructured Materials for High Performance Thermoelectric Applications[J]. Advances in New and Renewable Energy, 2013 , 1(2) : 115 -130 . DOI: 10.3969/j.issn.2095-560X.2013.02.001

References

[1] Slack G A. New Materials and Performance Limits for Thermoelectric Cooling. In: CRC Handbook of Thermoelectrics[M]. Edited by D.M. Rowe, CRC press, Boca Raton, 1995: 1-34.

[2] Wang X J, Tang M B, Chen H H, et al. Synthesis and High Thermoelectric Efficiency of Zintl Phase YbCd2-xZnxSb2[J]. Appl. Phys. Lett., 2009, 94(9): 092106.

[3] Bobev S, Sevov S C. Clathrate III of Group 14 Exists After All[J]. J. Am. Chem. Soc., 2001, 123(14): 3389-3390.

[4] Blake N P, Mollnitz L, Kresse G, et al. Why Clathrates are Good Thermoelectrics: A Theoretical Study of Sr8Ga16Ge30[J]. J. Chem. Phys., 1999, 111(7): 3133-3144.

[5] Nolas G S, Poon J, Kanatzidis M. Recent Developments in Bulk Thennoelectric Materials[J]. MRS Bull., 2006, 31(3): 199-205.

[6] Chakoumakos B C, Sales B C, Mandrus D. Disparate Atomic Displacements in Skutterudite-Type LaFe3CoSb12, A Model for Thermoelectric Behavior[J]. Acta Crystallogr., Sect. B, 1999, 55: 341-347.

[7] Bhattacharya S, Skove M J, Russell M, et al. Effect of Boundary Scattering on The Thermal Conductivity of TiNiSn-Based Half-Heusler Alloys[J]. Phys. Rev. B, 2008, 77(18): 184203.

[8] Yang J, Li H M, Wu T, et al. Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties[J]. Adv. Funct. Mater., 2008, 18: 2880-2888.

[9] Yan X, Liu W S, Wang H, et al. Stronger Phonon Scattering by Larger Differences in Atomic Mass and Size in p-Type Half-Heuslers Hf1-xTixCoSb0.8Sn0.2[J]. Environ. Eng. Sci., 2012, 5(6): 7543-7548.

[10] Rauwel P, Løvvik O M, Rauwel E, et al. Nanovoids in Thermoelectric Beta-Zn4Sb3: A Possibility for Nanoengineering Via Zn Diffusion[J]. Acta Mater., 2011, 59(13): 5266-5275.

[11] Bhattacharya S, , Hermann R P, Keppens V, et al. Effect of Disorder on The Thermal Transport and Elastic Properties in Thermoelectric Zn4Sb3[J]. Phys. Rev. B, 2006, 74(13): 134108.

[12] Terasaki I, Sasago Y, Uchinokura K. Large Thermoelectric Power in NaCo2O4 Single Crystals[J]. Phys. Rev. B, 1997, 56(20): 12685-12687.

[13] Zandbergen H W, Foo M, Xu Q, et al. Sodium Ion Ordering in NaxCoO2: Electron Diffraction Study[J]. Phys. Rev. B, 2004, 70(2): 024101.

[14] Koumoto K T, Terasaki I, Funahashi R. Complex Oxide Materials for Potential Thermoelectric Applications[J]. MRS Bull., 2006, (31): 206-210.

[15] Hicks L D, Dresselhaus MS. Effect of Quantum-Well Structures on The Thermoelectric Figure of Merit[J]. Phys. Rev. B, 1993, 47(19): 12727-12731.

[16] Hicks L D, Dresselhaus M S. Thermoelectric Figure of Merit of A One-Dimensional Conductor[J]. Phys. Rev. B, 1993, 47(24): 16631-16634.

[17] Hicks L D, Harman T C, Dresselhaus M S. Use of Quantum-Well Superlattices to Obtain A High Figure of Merit from Nonconentional Thermoelectric-Materials[J]. Appl. Phys. Lett., 1993, 63(23): 3230-3232.

[18] Hicks L D, Harman T C, Sun X, et al. Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit[J]. Phys. Rev. B, 1996, 53(16): 10493-10496.

[19] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-Film Thermoelectric Devices with High Room- Temperature Figures of Merit[J]. Nature, 2001, 413(6856): 597-602.

[20] Yang R, Chen G, Dresselhaus M S. Thermal Conductivity of Simple and Tubular Nanowire Composites in the Longitudinal Direction[J]. Phys. Rev. B, 2005, 72(12): 125418.

[21] 朱文, 杨君友, 崔崑, 等. 纳米超晶格热电材料的研究进展[J]. 材料导报, 2002, 16(12): 16-18.

[22] 陈立东, 熊震, 柏胜强. 纳米复合热电材料的研究进展[J]. 无机材料学报, 2010, 25(6): 563-567.

[23] Mehta R J, Zhang Y L, Karthik C, et al. A New Class of Doped Nanobulk High-Figure-of-Merit Thermoelectrics by Scalable Bottom-Up Assembly[J]. Nat. Mater., 2012, 11(3): 233-240.

[24] Biswas K, He J Q, Blum I D, et al. High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures[J]. Nature, 2012, 489(7416): 414-418.

[25] Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit[J]. Science, 2004, 303(818): 818-821.

[26] Xie W, Tang X, Yan Y, et al. Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys[J]. Appl. Phys. Lett., 2009, 94(10): 102111.

[27] Xie W, Tang X, Yan Y, et al. High Thermoelectric Performance BiSbTe Alloy with Unique Low- Dimensional Structure[J]. J. Appl. Phys., 2009, 105(11): 113713.

[28] Ebling D G, Jacquot A, Jägle M, et al. Structure and Thermoelectric Properties of Nanocomposite Bismuth Telluride Prepared by Melt Spinning or by Partially Alloying with IV-VI Compounds[J]. Phy. Stat. Sol. (RRL), 2007, 1(6): 238-240.

[29] Ishida Y, Ohta H, Fujimori A, et al. Temperature Dependence of the Chemical Potential in NaxCoO2: Implications for the Large Thermoelectric Power[J]. J. Phys. Soc. Jpn., 2007, 76(10): 103709.

[30] Sugiura K O, ohta H, Nomura K, et al. High Electrical Conductivity of Layered Cobalt Oxide Ca3Co4O9 Epitaxial Films Grown by Topotactic Ion-Exchange Method[J]. Appl. Phys. Lett., 2006, 89(3): 032111.

[31] Ohta S, Nomura T, Ohta H, et al. Large Thermoelectric Performance of Heavily Nb-Doped SrTiO3 Epitaxial Film at High Temperature[J]. Appl. Phys. Lett., 2005, 87(9): 092108.

[32] Ohta H, Kim S, Mune Y, et al. Giant Thermoelectric Seebeck Coefficient of A Two-Dimensional Electron Gas in SrTiO3[J]. Nat. Mater., 2007, 6: 129-134.

[33] Ohta H S, Seo W S, Koumoto K. Thermoelectric Properties of homologous Compounds in the ZnO-In2O3 System[J]. J. Am. Ceram. Soc., 1996, 79(8): 2193-2196.

[34] Jood P, Mehta R J, et al. Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties[J]. Nano Lett., 2011, 11(10): 4337-4342.

[35] Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO Oxide as a Potential Thermoelectric Material[J]. Environ. Eng. Sci., 2012, 5(5): 7188-7195.

[36] Thurber W R, Mante A J H. Thermal Conductivity and Thermoelectric Power of Rutile (TiO2) [J]. Phys. Rev. 1965, 139(5A): A1655-A1665.

[37] Dynys F W, Berger M H, Sehirlioglu A. Thermoelectric Properties of Undoped and Doped (Ti0.75Sn0.25)O2[J]. J. Am. Ceram. Soc. 2012, 95(2): 619-626.

[38] Portehault D, Maneeratana V, Candolfi C, et al. Facile General Route Toward Tunable Magnéli Nanostructures and Their Use as Thermoelectric Metal Oxide/Carbon Nanocomposites[J]. ACS Nano, 2011, 5(11): 9052-9061.

[39] Xu L, Carrett M P, Hu B. Doping Effects on Internally Coupled Seebeck Coefficient, Electrical, and Thermal Conductivities in Aluminum-Doped TiO2[J]. J. Phys. Chem. C, 2012, 116(24):13020-13025.

[40] Su L, Gan Y X. Formation and Thermoelectric Property of TiO2 Nanotubes Covered by Te-Bi-Pb Nanoparticles[J]. Electrochim. Acta., 2011, 56(16): 5794-5803.

[41] Kurita D, Ohta S, Sugiura K, et al. Carrier Generation and Transport Properties of Heavily Nb-Doped Anatase TiO2 Epitaxial Films at High Temperatures[J]. J. Appl. Phys. 2006, (100): 096105.

[42] Miao L, Tanemura S, Huang R, et al. Large Seebeck Coefficients of Protonated Titanate Nanotubes for High- Temperature Thermoelectric Conversion[J]. ACS Appl. Mater. Inter., 2010, 2(8): 2355-2359.

[43] Chen Q, Du G H, Zhang S, et al. The Structure of Trititanate Nanotubes[J]. Acta Crystallogr., Sect. B, 2002, (B58): 587-593.

[44] Yoshida K, Miao L, Tanaka N, et al. Direct Observation of TiO6 Octahedron Forming Titanate Nanotube by Advanced Transmission Electron Microscopy[J]. Nanotechnology, 2009, 20: 405709.

[45] Filipic C, Levstik A, Kutnjak Z, et al. Fluctuation- Induced Tunneling in TiO2-Derived Nanotube Pellets[J]. J. Appl. Phys., 2007, 101: 084308.

[46] Liu C, Miao L, Zhou J, et al. Bottom-Up Assembly to Ag Nanoparticles Embedded Nb-Doped TiO2 Nanobulks with Improved n-type Thermoelectric Properties[J]. J. Mater. Chem. 2012, 22: 1480-1490.

[47] Thompson T L, Yates J T. Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes[J]. Chem. Rev., 2006, 106(10): 4428-4453.

[48] Wendt S, Sprunger P T, Lira E, et al. The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania[J]. Science, 2008, 320(5884): 1755-1759.

[49] Liu C, Miao L, Zhou J, et al. Chemical Tuning of TiO2 Nanoparticles and Sintered Compacts for Enhanced Thermoelectric Properties. J. Phys. Chem. C, 2013, 117: 11487-11497.

[50] Morris D, Dou Y, Rebane J, et al. Photoemission and STM Study of the Electronic Structure of Nb-Doped TiO2[J]. Phys. Rev. B, 2000, 61(20): 13445-13457.

[51] DiValentin C, Pacchioni G, Selloni A. Reduced and n-Type Doped TiO2: Nature of Ti3+ Species[J]. J. Phys. Chem. C, 2009, 113(48): 20543-20552.

[52] Chester P F. Electron Spin Resonance in Semiconductor Rutile[J]. J. Appl. Phys., 1961, 32(S): 2233-2237.

[53] Frederiksen H P R. Recent Studies on Rutile (TiO2)[J]. J. Appl. Phys., 1961, 32: 2211-2215.

[54] Callaway J. Model for Lattice Thermal Conductivity at Low Temperatures[J]. Phys. Rev., 1959, 113(4): 1046-1051.

[55] Shi X, Pei Y, Snyder G J, et al. Model for LatticeThermal Conductivity at Low Temperatures[J]. Energy Environ. Sci., 2011, 4(10): 4086-4095.

[56] Harada S, Tanaka K, Inui H. Thermoelectric Properties and Crystallographic Shear Structures in Titanium Oxides of the Magnéli phases[J]. J. Appl. Phys., 2010, 108(8): 083703.

[57] Liu C, Miao L, Hu D, et al. Enhanced Asymmetrical Transport of Carriers Induced by Local Structural Distortion in Chemically Tuned Titania: A Possible Mechanism for Enhancing Thermoelectric Properties[J]. Phys. Rev. B 2013, In press.

[58] Howard C J, Savine T M, Dickson F. Structural and Thermal Parameters for Rutile and Anatase[J]. Acta Crystallogr., Sect. B, 1991, 47: 462-468.

[59] Hossain F M, Murch G E, Sheppard L, et al. Ab initio Electronic Structure Calculation of Oxygen Vacancies in Rutile Titanium Dioxide[J]. Solid State Ionics, 2007, 178(5-6): 319-325.

[60] Cho E, Han S, Ahn H S, et al. First-Principles Study of Point Defects in Rutile TiO2-x[J]. Phys. Rev. B, 2006, 73(19): 193202.

[61] Perevalov T V, Critsenko V A. Electronic structure of TiO2 rutile with oxygen vacancies: Ab initio simulations and comparison with the experiment[J]. J. Exp. Theor. Phys., 2011, 112(2): 310-316.

[62] Panayotov D A, Burrows S P, Morris J R. Infrared Spectroscopic Studies of Conduction Band and Trapped Electrons in UV-Photoexcited, H-Atom n-Doped, and Thermally Reduced TiO2[J]. J. Phys. Chem. C, 2012, 116(7): 4535-4544.

[63] Mattioli G, Alippi P, Filippone F, et al. Deep versus Shallow Behavior of Intrinsic Defects in Rutile and Anatase TiO2 Polymorphs[J]. J. Phys. Chem. C, 2010, 114(49): 21694-21704.

[64] Germs W C, Guo K, Janssen R A J, et al. Unusual Thermoelectric Behavior Indicating a Hopping to Bandlike Transport Transition in Pentacene[J]. Phys. Rev. Lett., 2012, 109(1): 016601.

[65] Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured Thermoelectrics: Big Effi ciency Gains from Small Features[J]. Adv. Mater., 2010, 22(36): 3970-3980

Outlines

/