Welcome to visit Advances in New and Renewable Energy!

Analysis of Structural Factors Affecting Thermal Runaway Propagation of Li-Ion Battery Modules

  • WANG Qian ,
  • LI Ding-gen ,
  • LI Wei ,
  • XU Peng
Expand
  • 1. Huazhong University of Science and Technology, China-EU Institute for Clean and Renewable Energy, Wuhan 430074, China;
    2. Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan 430074, China;
    3. Military representative room of the PLA navy plant 426 in Dalian, Dalian 116000, China

Received date: 2019-03-01

  Revised date: 2019-06-09

  Online published: 2019-08-29

Abstract

In order to optimize the structure design of lithium-ion battery modules, a three-dimensional thermal runaway propagation model of cylindrical battery modules was constructed by thermal runaway numerical analysis combined with COMSOL MULTIPHYSICS software, and the thermal runaway propagation characteristics of the different arrangement structures and the gap of the battery were studied. The results showed as follows: the insert structure can effectively reduce the thermal runaway propagation rate; increasing the battery gap in the module makes the thermal runaway trigger time move backward; in the late thermal runaway of the module, the diffusion rate was accelerated.

Cite this article

WANG Qian , LI Ding-gen , LI Wei , XU Peng . Analysis of Structural Factors Affecting Thermal Runaway Propagation of Li-Ion Battery Modules[J]. Advances in New and Renewable Energy, 2019 , 7(4) : 295 -301 . DOI: 10.3969/j.issn.2095-560X.2019.04.001

References

[1] GUO G F, LONG B, CHENG B, et al.Three- dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of power sources, 2010, 195(8): 2393-2398.
[2] 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程, 2015, 37(7): 743-750, 756. DOI: 10.3969/j.issn.1000-680X.2015.07.002.
[3] LOPEZ C F.Modeling and experimental study of lithium-ion battery thermal behavior[D]. Texas: Texas A & M University, 2015: 195-207.
[4] FENG X N, HE X M, OUYANG M G, et al.Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied energy, 2015, 154: 74-91. DOI: 10.1016/j.apenergy.2015.04.118.
[5] KIZILEL R, LATEEF A, SABBAH R, et al.Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of power sources, 2008, 183(1): 370-375. DOI: 10.1016/j.jpowsour.2008.04.050.
[6] 尚怀芳. 锂离子电池正极材料LiFePO4和LiMn2O4的表面结构及电化学性性能研究[D]. 北京: 北京工业大学, 2013.
[7] CHIU K C, LIN C H, YEH S F, et al.An electrochemical modeling of lithium-ion battery nail penetration[J]. Journal of power sources, 2014, 251: 254-263. DOI: 10.1016/j.jpowsour.2013.11.069.
[8] HATCHARD T D, MACNEIL D D, BASU A, et al.Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the electrochemical society, 2001, 148(7): A755-A761. DOI: 10.1149/1.1377592.
[9] SPOTNITZ R, FRANKLIN J.Abuse behavior of high-power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3.
[10] 杜双龙, 赖延清, 贾明, 等. 圆柱锂离子动力电池电热特性仿真[J]. 中国有色金属学报, 2014, 24(7): 1823-1830. DOI: 10.19476/j.ysxb.1004.0609.2014.07.020.
Outlines

/