Acetone is an important ketone product in hemicellulose pyrolysis, whereas, its formation mechanism is still unclear. In this paper, xylose, a typical hemicellulose monosaccharide, was selected as a model compound. Density functional theory (DFT) calculations were employed to reveal the possible pathways for generating acetone in xylose pyrolysis. The influence of temperature on the competitiveness of possible pathways was also discussed. The results showed that 3-carbonyl butyraldehyde, a four-carbon-intermediate, was an important intermediate for the formation of acetone during the pyrolysis of xylose. The decomposition pathways of 3-ketopentose were the most favorable for acetone formation from the C1-C2-C3 and C3-C4-C5 segments of xylose. The decomposition of D-xylose can also easily results in the formation of C3-C4-C5 acetone. With the temperature increase, the proportion of C2-C3-C4 acetone increased correspondingly.
GAO Li-juan
,
LI Wen-tao
,
HAN Xiao-feng
,
HU Bin
,
FAN Xin-rui
,
NIU Tian-xiang
,
LU Qiang
. A Theoretical Study on the Formation Mechanism of Acetone in the Process of Xylose Pyrolysis[J]. Advances in New and Renewable Energy, 2019
, 7(5)
: 405
-414
.
DOI: 10.3969/j.issn.2095-560X.2019.05.004
[1] 国家能源局. 生物质能发展“十三五”规划[R]. 北京: 国家能源局, 2016.
[2] GUEDES R E, LUNA A S, TORRES A R.Operating parameters for bio-oil production in biomass pyrolysis: a review[J]. Journal of analytical and applied pyrolysis, 2018, 129: 134-149. DOI: 10.1016/j.jaap.2017.11.019.
[3] MASCHIO G, KOUFOPANOS C, LUCCHESI A.Pyrolysis, a promising route for biomass utilization[J]. Bioresource technology, 1992, 42(3): 219-231. DOI: 10.1016/0960-8524(92)90025-S.
[4] WANG S R, DAI G X, YANG H P, et al.Lignocellulosic biomass pyrolysis mechanism: a state-of- the-art review[J]. Progress in energy and combustion science, 2017, 62: 33-86. DOI: 10.1016/j.pecs.2017.05.004.
[5] ZHOU X W, LI W J, MABON R, et al.A critical review on hemicellulose pyrolysis[J]. Energy technology, 2017, 5(1): 52-79. DOI: 10.1002/ente.201600327.
[6] ZHOU X W, LI W J, MABON R, et al.A mechanistic model of fast pyrolysis of hemicellulose[J]. Energy & environmental science, 2018, 11(5): 1240-1260. DOI: 10.1039/C7EE03208K.
[7] WANG S R, LIANG T, RU B, et al.Mechanism of xylan pyrolysis by Py-GC/MS[J]. Chemical research in Chinese universities, 2013, 29(4): 782-787. DOI: 10.1007/s40242-013-2447-6.
[8] SHEN D K, GU S, BRIDGWATER A V.The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose[J]. Carbohydrate polymers, 2010, 82(1): 39-45. DOI: 10.1016/j.carbpol.2010.04.018.
[9] SHAFIZADEH F, MCGINNIS G D, PHILPOT C W.Thermal degradation of xylan and related model compounds[J]. Carbohydrate research, 1972, 25(1): 23-33. DOI: 10.1016/S0008-6215(00)82742-1.
[10] PENG Y Y, WU S B.The structural and thermal characteristics of wheat straw hemicellulose[J]. Journal of analytical and applied pyrolysis, 2010, 88(2): 134-139. DOI: 10.1016/j.jaap.2010.03.006.
[11] SHEN D K, GU S, BRIDGWATER A V.Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of analytical and applied pyrolysis, 2010, 87(2): 199-206. DOI: 10.1016/j.jaap.2009.12.001.
[12] HUANG J B, HE C, WU L Q, et al.Thermal degradation reaction mechanism of xylose: a DFT study[J]. Chemical physics letters, 2016, 658: 114-124. DOI: 10.1016/j.cplett.2016.06.025.
[13] HUANG J B, LIU C, TONG H, et al.Theoretical studies on pyrolysis mechanism of O-acetyl-xylopyranose[J]. Journal of fuel chemistry and technology, 2013, 41(3): 285-293. DOI: 10.1016/S1872-5813(13)60019-5.
[14] 吴隆琴, 黄金保, 童红, 等. 吡喃木糖热裂解机理的密度泛函理论研究[J]. 原子与分子物理学报, 2017, 34(2): 200-212.
[15] PAINE III J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling: Part 3. The pyrolysis of D-glucose: formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms[J]. Journal of analytical and applied pyrolysis, 2008, 82(1): 42-69. DOI: 10.1016/j.jaap.2007.12.005.
[16] KOHN W, BECKE A D, PARR R G.Density functional theory of electronic structure[J]. The journal of physical chemistry, 1996, 100(31): 12974-12980. DOI: 10.1021/jp960669l.
[17] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 09 [CP]. Gaussian 09, Revision D01, Gaussian, Inc, Wallingford CT, 2013.
[18] CANNEAUX S, BOHR F, HENON E.KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of computational chemistry, 2014, 35(1): 82-93. DOI: 10.1002/jcc.23470.
[19] WANG M, LIU C, LI Q B, et al.Theoretical insight into the conversion of xylose to furfural in the gas phase and water[J]. Journal of molecular modeling, 2015, 21(11): 296. DOI: 10.1007/s00894-015-2843-6.
[20] 田慧云, 胡斌, 张阳, 等. 吡喃木糖和O-乙酰基吡喃木糖热解形成羟基乙醛的机理研究[J]. 燃料化学学报, 2015, 43(2): 185-194. DOI: 10.3969/j.issn.0253-2409. 2015.02.008.
[21] 张智, 刘朝, 李豪杰, 等. 木聚糖单体热解机理的理论研究[J]. 化学学报, 2011, 69(18): 2099-2107.
[22] LU Q, TIAN H Y, HU B, et al.Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde[J]. Journal of analytical and applied pyrolysis, 2016, 120: 15-26. DOI: 10.1016/j.jaap.2016.04.003.
[23] HU B, LU Q, JIANG X Y, et al.Formation mechanism of hydroxyacetone in glucose pyrolysis: a combined experimental and theoretical study[J]. Proceedings of the combustion institute, 2019, 37(3): 2741-2748. DOI: 10.1016/j.proci.2018.05.146.
[24] HU B, LU Q, JIANG X Y, et al.Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. Journal of energy chemistry, 2018, 27: 486-501. DOI: 10.1016/j.jechem.2017.11.013.