[1] 张成武. 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016.
[2] ANUGWOM I, MÄKI-ARVELA P, VIRTANEN P, et al. Selective extraction of hemicelluloses from spruce using switchable ionic liquids[J]. Carbohydrate polymers, 2012, 87(3): 2005-2011. DOI: 10.1016/j.carbpol.2011.10.006.
[3] 李利芬. 基于氯化胆碱低共熔溶剂的木质素提取改性和降解研究[D]. 哈尔滨: 东北林业大学, 2015.
[4] BALAKSHIN M, CAPANEMA E, GRACZ H, et al.Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy[J]. Planta, 2011, 233(6): 1097-1110. DOI: 10.1007/s00425-011-1359-2.
[5] DUTTA T, PAPA G, WANG E, et al.Characterization of lignin streams during bionic liquid-based pretreatment from grass, hardwood, and softwood[J]. ACS sustainable chemistry & engineering, 2018, 6(3): 3079-3090. DOI: 10.1021/acssuschemeng.7b02991.
[6] 候其东, 鞠美庭, 李维尊, 等. 基于离子液体的生物质组分分离研究进展[J]. 化工进展, 2016, 35(10): 3022-3031. DOI: 10.16085/j.issn.1000-6613.2016.10.003.
[7] FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green chemistry, 2012, 14(8): 2153-2157. DOI: 10.1039/c2gc35660k.
[8] SATLEWAL A, AGRAWAL R, BHAGIA S, et al.Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities[J]. Biotechnology advances, 2018, 36(8): 2032-2050. DOI: 10.1016/j.biotechadv.2018.08.009.
[9] FRANCISCO M, VAN DEN BRUINHORST A, KROON M C. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angewandte chemie-international edition, 2013, 52(11): 3074-3085. DOI: 10.1002/anie.201207548.
[10] ABBOTT A P, CAPPER G, DAVIES D L, et al.Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical communications, 2001(19): 2010-2011. DOI: 10.1039/b106357j.
[11] SMITH E L, ABBOTT A P, RYDER K S.Deep eutectic solvents (DESs) and their applications[J]. Chemical reviews, 2014, 114(21): 11060-11082. DOI: 10.1021/cr300162p.
[12] ESPINO M, DE LOS ÁNGELES FERNÁNDEZ M, GOMEZ F J V, et al. Natural designer solvents for greening analytical chemistry[J]. TrAC trends in analytical chemistry, 2015, 76: 126-136. DOI: 10.1016/j.trac.2015.11.006.
[13] HARRIS R C.Physical properties of alcohol based deep eutectic solvents[D]. Leicester: University of Leicester, 2008.
[14] GARCÍA G, APARICIO S, ULLAH R, et al. Deep eutectic solvents: physicochemical properties and gas separation applications[J]. Energy & fuels, 2015, 29(4): 2616-2644. DOI: 10.1021/ef5028873.
[15] ZHANG Q H, DE OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical society reviews, 2012, 41(21): 7108-7146. DOI:10.1039/c2cs35178a.
[16] LOOW Y L, NEW E K, YANG G H, et al.Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24(9): 3591-3618. DOI: 10.1007/s10570-017-1358-y.
[17] XING W R, XU G C, DONG J J, et al.Novel dihydrogen-bonding deep eutectic solvents: pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield[J]. Chemical engineering journal, 2018, 333: 712-720. DOI: 10.1016/j.cej.2017.09.176.
[18] YU Q, ZHANG A M, WANG W, et al.Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia' herbal residues[J]. Bioresource technology, 2018, 247: 705-710. DOI: 10.1016/j.biortech.2017.09.159.
[19] HOU X D, LI A L, LIN K P, et al.Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource technology, 2018, 249: 261-267. DOI: 10.1016/j.biortech.2017.10.019.
[20] REN H W, CHEN C M, WANG Q H, et al.The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose[J]. BioResources, 2016, 11(2): 5435-5451. DOI: 10.15376/biores.11.2.5435-5451.
[21] GUO Z W, LING Z, WANG C, et al.Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue[J]. Bioresource technology, 2018, 265: 334-339. DOI: 10.1016/j.biortech.2018.06.027.
[22] DE OLIVEIRA VIGIER K, CHATEL G, JÉRÔME F. Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations[J]. ChemCatChem, 2015, 7(8): 1250-1260. DOI: 10.1002/cctc.201500134.
[23] KIM K H, DUTTA T, SUN J, et al.Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green chemistry, 2018, 20(4): 809-815. DOI: 10.1039/C7GC03029K.
[24] XU G C, DING J C, HAN R Z, et al.Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource technology, 2016, 203: 364-369. DOI: 10.1016/j.biortech.2015.11.002.
[25] LEU S Y, ZHU J.Substrate-related factors affecting enzymatic saccharification of lignocelluloses: our recent understanding[J]. Bioenergy research, 2013, 6(2): 405-415. DOI: 10.1007/s12155-012-9276-1.
[26] LYNAM J G, KUMAR N, WONG M J.Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource technology, 2017, 238: 684-689. DOI: 10.1016/j.biortech.2017.04.079.
[27] BHAGIA S, LI H J, GAO X, et al.Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance[J]. Biotechnology for biofuels, 2016, 9: 245. DOI: 10.1186/s13068-016-0660-5.
[28] DUMITRACHE A, TOLBERT A, NATZKE J, et al.Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass[J]. Green chemistry, 2017, 19(9): 2275-2285. DOI: 10.1039/C7GC00346C.
[29] RALPH J, LUNDQUIST K, BRUNOW G, et al.Lignins: Natural polymers from oxidative coupling of 4-hydroxy- phenylpropanoids[J]. Phytochemistry reviews, 2004, 3(1/2): 29-60. DOI: 10.1023/B:PHYT.0000047809.65444.a4.
[30] LIU Y Z, CHEN W S, XIA Q Q, et al.Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10(8): 1692-1700. DOI: 10.1002/cssc.201601795.
[31] XIA Q Q, LIU Y Z, MENG J, et al.Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green chemistry, 2018, 20(12): 2711-2721. DOI: 10.1039/C8GC00900G.
[32] PROCENTESE A, RAGANATI F, OLIVIERI G, et al.Deep eutectic solvents pretreatment of agro-industrial food waste[J]. Biotechnology for biofuels, 2018, 11: 37. DOI: 10.1186/s13068-018-1034-y.
[33] ZHANG C W, XIA S Q, MA P S.Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J]. Bioresource technology, 2016, 219: 1-5. DOI: 10.1016/j.biortech.2016.07.026.
[34] SHEN X J, WEN J L, MEI Q Q, et al.Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization[J]. Green chemistry, 2019, 21(2): 275-283. DOI: 10.1039/c8gc03064b.
[35] GILLI P, PRETTO L, BERTOLASI V, et al.Predicting hydrogen-bond strengths from acid-base molecular properties. the pKa slide rule: toward the solution of a long-lasting problem[J]. Accounts of chemical research, 2008, 42(1): 33-44. DOI: 10.1021/ar800001k.
[36] DAI Y T, VAN SPRONSEN J, WITKAMP G J, et al.Natural deep eutectic solvents as new potential media for green technology[J]. Analytica chimica acta, 2013, 766: 61-68. DOI: 10.1016/j.aca.2012.12.019.
[37] ADLER E.Lignin chemistry—past, present and future[J]. Wood science and technology, 1977, 11(3): 169-218. DOI: 10.1007/BF00365615.
[38] LOOW Y L, WU T Y, YANG G H, et al.Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery[J]. Bioresource technology, 2018, 249: 818-825. DOI: 10.1016/j.biortech. 2017.07.165.
[39] CVJETKO BUBALO M, ĆURKO N, TOMAŠEVIĆ M, et al. Green extraction of grape skin phenolics by using deep eutectic solvents[J]. Food chemistry, 2016, 200: 159-166. DOI: 10.1016/j.foodchem.2016.01.040.
[40] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al.Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185): 1246843. DOI: 10.1126/science.1246843.
[41] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al. Lignin-first biomass fractionation: the advent of active stabilisation strategies[J]. Energy & environmental science, 2017, 10(7): 1551-1557. DOI: 10.1039/c7ee01298e.
[42] WU X J, FAN X T, XIE S J, et al.Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions[J]. Nature catalysis, 2018, 1(10): 772-780. DOI: 10.1038/s41929-018-0148-8.
[43] ALVAREZ-VASCO C, MA R S, QUINTERO M, et al.Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green chemistry, 2016, 18(19): 5133-5141. DOI: 10.1039/c6gc01007e.
[44] ZHAO X B, ZHANG L H, LIU D H.Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels, bioproducts and biorefining, 2012, 6(4): 465-482. DOI: 10.1002/bbb.1331.
[45] HUANG C, ZHAO C, LI H L, et al.Comparison of different pretreatments on the synergistic effect of cellulase and xylanase during the enzymatic hydrolysis of sugarcane bagasse[J]. RSC advances, 2018, 8(54): 30725-30731. DOI: 10.1039/C8RA05047C.
[46] FU D B, MAZZA G, TAMAKI Y.Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues[J]. Journal of agricultural and food chemistry, 2010, 58(5): 2915-2922. DOI: 10.1021/jf903616y.
[47] HOU X D, LI N, ZONG M H.Facile and simple pretreatment of sugar cane bagasse without size reduction using renewable ionic liquids-water mixtures[J]. ACS sustainable chemistry & engineering, 2013, 1(5): 519-526. DOI: 10.1021/sc300172v.
[48] SUN R, SONG X L, SUN R C, et al.Effect of lignin content on enzymatic hydrolysis of furfural residues[J]. BioResources, 2011, 6(1): 317-328.
[49] 吴凯, 应文俊, 郑志锋, 等. 两种木质素对纤维素酶水解的影响机制[J]. 生物质化学工程, 2018, 52(2): 29-34. DOI: 10.3969/j.issn.1673-5854.2018.02.006.
[50] LIU W, CHEN W, HOU Q X, et al.Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis[J]. Bioresource technology, 2017, 228: 125-132. DOI: 10.1016/j.biortech.2016.12.063.
[51] ZHU J Y, PAN X, ZALESNY R S JR. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance[J]. Applied microbiology and biotechnology, 2010, 87(3): 847-857. DOI: 10.1007/s00253-010-2654-8.
[52] PAN X J.Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of biobased materials and bioenergy, 2008, 2(1): 25-32. DOI: 10.1166/jbmb.2008.005.
[53] XIMENES E, KIM Y, MOSIER N, et al.Deactivation of cellulases by phenols[J]. Enzyme and microbial technology, 2011, 48(1): 54-60. DOI: 10.1016/j.enzmictec.2010.09.006.
[54] PROCENTESE A, JOHNSON E, ORR V, et al.Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource technology, 2015, 192: 31-36. DOI: 10.1016/j.biortech.2015.05.053.
[55] YOSHIDA M, LIU Y, UCHIDA S, et al.Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides[J]. Bioscience, biotechnology, and biochemistry, 2008, 72(3): 805-810. DOI: 10.1271/bbb.70689.
[56] ZHANG J H, TANG M, VIIKARI L.Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases[J]. Bioresource technology, 2012, 121: 8-12. DOI: 10.1016/j.biortech.2012.07.010.
[57] QING Q, WYMAN C E.Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover[J]. Biotechnology for biofuels, 2011, 4: 18. DOI: 10.1186/1754-6834-4-18.
[58] ZHU J.Physical pretreatment-woody biomass size reduction-for forest biorefinery[J]. ACS symposium series, 2011, 1067: 89-107. DOI: 10.1021/bk-2011-1067.ch004.
[59] KARIMI K, TAHERZADEH M J.A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity[J]. Bioresource technology, 2016, 200: 1008-1018. DOI: 10.1016/j.biortech. 2015.11.022.
[60] LI H L, XIONG L, CHEN X F, et al.Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment[J]. Bioresource technology, 2017, 228: 257-263. DOI: 10.1016/j.biortech.2016.12.119.