Welcome to visit Advances in New and Renewable Energy!

Effect of Different Pretreatments on Efficiency of Anaerobic Digestion of Dicranopteris Dichotoma and Phytolacca Americana L

  • LU Tao ,
  • XING Tao ,
  • SUN Yong-ming ,
  • HE Yu ,
  • REN Hai-wei ,
  • LI Jin-ping
Expand
  • 1. Western China Energy & Environment Research Center, Lanzhou University of Technology, Lanzhou 730050, China;
    2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

Received date: 2019-07-24

  Online published: 2019-12-31

Abstract

The effect of pretreatment methods with acid (1.5% H2SO4), alkali (2% NaOH) and liquid hot water (180°C) on anaerobic digestion (AD) performance of Dicranopteris dichotoma and Phytolacca americana L were investigated in this paper. The results indicated that the removal rate of lignin varied with different pretreatments at order: alkali > acid > liquid hot water, 52.84% and 48.62% lignin were removed from the Dicranopteris dichotoma and Phytolacca americana L with alkali pretreatment, respectively. The yield of methane production with alkali pretreatment was also the highest, which was 134.62 mL/g VS and 260.40 mL/g VS, respectively, 53.62% and 79.38% higher than untreated. The lignin removal rate was lower by acid and liquid hot water with Dicranopteris dichotoma, which was 23.61% and 4.52%, respectively, 31.68% and 5.67% for Phytolacca americana L, respectively. In addition, acid and liquid hot water had good performance on methane production with Dicranopteris dichotoma as well, which was 33.08% and 38.62% higher than untreated; however, there was no obviously improvement with Phytolacca americana L (7.83% higher with acid and 3.42% lower with liquid hot water). The alkali pretreatment had significant effect on methane production, and Phytolacca americana L had better potential for methane production than Dicranopteris dichotoma.

Cite this article

LU Tao , XING Tao , SUN Yong-ming , HE Yu , REN Hai-wei , LI Jin-ping . Effect of Different Pretreatments on Efficiency of Anaerobic Digestion of Dicranopteris Dichotoma and Phytolacca Americana L[J]. Advances in New and Renewable Energy, 2019 , 7(6) : 473 -479 . DOI: 10.3969/j.issn.2095-560X.2019.06.001

References

[1] 潘宗涛, 陈志强, 陈志彪, 等. 南方离子吸附型稀土矿区表层土壤稀土有效性及芒萁稀土元素迁移、吸收特征[J]. 稀土, 2019, 40(1): 5-17. DOI: 10.16533/J.CNKI. 15-1099/TF.20190004.
[2] 景琪, 李晔, 张譞, 等. 螯合剂和商陆联合修复重金属Cd、Cu污染土壤的田间试验[J]. 武汉理工大学学报, 2014, 36(4): 139-143. DOI: 10.3963/j.issn.1671-4431. 2014.04.025.
[3] 杨胜香. 广西锰矿废弃地重金属污染评价及生态恢复研究[D]. 桂林: 广西师范大学, 2007.
[4] 仇荣亮, 汤叶涛, 章卫华, 等. 工矿废弃地重金属污染土壤修复进展[C]//2009土壤资源持续利用与生态环境安全学术研讨会论文集. 广州, 广东: 中国土壤学会, 2009: 173-181.
[5] 刘维涛, 倪均成, 周启星. 重金属富集植物生物质的处置技术研究进展[J]. 农业环境科学学报, 2014, 33(1): 15-27. DOI: 10.11654/jaes.2014.01.002.
[6] 张彩红, 刘琪英, 王海永, 等. 纤维素温和条件下一步水热法制备甲烷的研究[J]. 新能源进展, 2018, 6(5): 339-345. DOI: 10.3969/j.issn.2095-560X.2018.05.001.
[7] 刘琪, 马兴元, 马君. 生物质能源干式厌氧发酵预处理的研究进展[J]. 能源环境保护, 2011, 25(4): 5-9. DOI: 10.3969/j.issn.1006-8759.2011.04.002.
[8] HENDRIKS A T, ZEEMAN G.Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource technology, 2009, 100(1): 10-18. DOI: 10.1016/j.biortech.2008.05.027.
[9] 祝其丽, 何明雄, 谭芙蓉. 木质纤维素生物质预处理研究现状[J]. 生物技术进展, 2015, 5(6): 414-419. DOI: 10.3969/j.issn.2095-2341.2015.06.02.
[10] 刘华敏, 马明国, 刘玉兰. 预处理技术在生物质热化学转化中的应用[J]. 化学进展, 2014, 26(1): 203-213. DOI: 10.7536/pc130602.
[11] 马兴元, 刘琪, 马君. 酸性预处理对生物质秸秆干式厌氧发酵的影响[J]. 安徽农业科学, 2011, 39(25): 15584-15585, 15599. DOI: 10.3969/j.issn.0517-6611. 2011.25.144.
[12] 谢欣欣, 周俊, 吴美容, 等. 酸碱预处理对芦蒿秸秆厌氧发酵的影响[J]. 化工学报, 2014, 65(5): 1883-1887. DOI: 10.3969/j.issn.0438-1157.2014.05.046.
[13] KANG X H, SUN Y M, LI L H, et al.Improving methane production from anaerobic digestion of Pennisetum Hybrid by alkaline pretreatment[J]. Bioresource technology, 2018, 255: 205-212. DOI: 10.1016/j.biortech.2017.12.001.
[14] 樊世漾. 水热预处理及酸/碱-水热预处理对玉米秸秆酶解产糖及厌氧发酵的影响[D]. 北京: 北京林业大学, 2016.
[15] GILCREAS F W.Standard methods for the examination of water and waste water[J]. American journal of public health and the nation’s health, 1966, 56(3): 387-388. DOI: 10.2105/ajph.56.3.387.
[16] National Renewable Energy Laboratory (NREL). Determination of structural carbohydrates and lignin in biomass[R]. Golden, CO, USA: NREL, 2004.
[17] 梁仲燕, 戴本林, 郭旭晶, 等. H3PO4预处理水稻秸秆厌氧发酵产沼气的试验研究[J]. 中国沼气, 2016, 34(3): 31-35. DOI: 10.3969/j.issn.1000-1166.2016.03.006.
[18] KLINKE H B, THOMSEN A B, AHRING B K.Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass[J]. Applied microbiology and biotechnology, 2004, 66(1): 10-26. DOI: 10.1007/s00253-004-1642-2.
[19] TOQUERO C, BOLADO S.Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing[J]. Bioresource technology, 2014, 157: 68-76. DOI: 10.1016/j.biortech.2014.01.090.
[20] TOOR S S, ROSENDAHL L, HOFFMANN J, et al.Lignocellulosic biomass-thermal pre-treatment with steam[M]//FANG Z. Pretreatment Techniques for Biofuels and Biorefineries. Berlin Heidelberg: Springer, 2013: 59-75. DOI: 10.1007/978-3-642-32735-33.
[21] TABASSUM M R, XIA A, MURPHY J D.The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel[J]. Bioresource technology, 2016, 209: 213-219. DOI: 10.1016/j.biortech.2016.02.120.
[22] HANAKI K, HIRUNMASUWAN S, MATSUO T.Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol[J]. Water research, 1994, 28(4): 877-885. DOI: 10.1016/0043-1354(94)90094-9.
[23] 周晓臣. 城镇有机垃圾厌氧发酵中有机酸及氨氮抑制效应研究[D]. 重庆: 重庆大学, 2006.
[24] FELCHNER-ZWIRELLO M, WINTER J, GALLERT C.Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer[J]. Applied microbiology and biotechnology, 2013, 97(20): 9193-9205. DOI: 10.1007/s00253-012-4616-9.
Outlines

/