Welcome to visit Advances in New and Renewable Energy!

Effect of Microscopic Distribution of Methane Hydrate on Resistivity in Porous Media

  • CHEN Guo-qi ,
  • LI Cheng-feng ,
  • LIU Chang-ling ,
  • XING Lan-chang
Expand
  • 1. College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China 2. Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China;
    3. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China

Received date: 2019-09-21

  Online published: 2019-12-31

Abstract

The resistivity logging technology is an important mean for estimating natural gas hydrate reservoir resources. It is important to determine the relationship between reservoir resistivity and microscopic distribution of hydrate in sediment pores for accurate estimation of hydrate saturation. The methane hydrate formation experiment in porous media was carried out and CT observation and resistivity test was performed based on the independently-developed experimental device with CT-resistivity measurement, and image and resistivity data were obtained during methane hydrate formation. The relationship between resistivity change and hydrate saturation in different microscopic distribution model of methane hydrate was discussed. The experimental results showed that the hydrate distribution was mainly in contacting mode, compared with the filling effect of hydrate on pores, the salt-removing effect was more significant, therefore the resistivity decreased slightly with the increase of the hydrate saturation when the hydrate saturation was lower than 10.50%. The hydrate distribution was between floating and contacting mode, and the hindrance effect of hydrate on the pore-water connected section in the floating distribution mode was greater, so the resistivity increased sharply with the increase of hydrate saturation when the hydrate saturation ranged between 10.50% and 22.34%. When the hydrate saturation was 22.34%-27.50%, the hydrate still in a coexistence distribution mode of floating and contacting; in the case that most of the pores have been clogged, the effect of hydrate on the resistivity was small, hence the rate of resistivity growth reduced as the hydrate saturation increase. It can be seen that the resistivity response characteristics are significantly different under different hydrate saturation ranges, which is related to the microscopic distribution of hydrate

Cite this article

CHEN Guo-qi , LI Cheng-feng , LIU Chang-ling , XING Lan-chang . Effect of Microscopic Distribution of Methane Hydrate on Resistivity in Porous Media[J]. Advances in New and Renewable Energy, 2019 , 7(6) : 493 -499 . DOI: 10.3969/j.issn.2095-560X.2019.06.004

References

[1] 李彦龙, 刘昌岭, 刘乐乐. 含水合物沉积物损伤统计本构模型及其参数确定方法[J]. 石油学报, 2016, 37(10): 1273-1279. DOI: 10.7623/syxb201610007.
[2] 祝有海, 张永勤, 文怀军, 等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11): 1762-1771. DOI: 10.3321/j.issn:0001-5717.2009.11.018.
[3] 王淑玲, 孙张涛. 全球天然气水合物勘查试采研究现状及发展趋势[J]. 海洋地质前沿, 2018, 34(7): 24-32. DOI: 10.16028/j.1009-2722.2018.07004.
[4] 赖亦君, 杨涛, 梁金强, 等. 南海北部陆坡珠江口盆地东南海域GMGS2-09井孔隙水地球化学特征及其对天然气水合物的指示意义[J]. 海洋地质与第四纪地质, 2019, 39(3): 135-142. DOI: 10.16562/j.cnki.0256-1492. 2018010201.
[5] 陈玉凤, 李栋梁, 梁德青, 等. 含天然气水合物的海底沉积物的电学特性实验[J]. 地球物理学进展, 2013, 28(2): 1041-1047. DOI: 10.6038/pg20130258.
[6] PEARSON C F, HALLECK P M, MCGUIRE P L, et al.Natural gas hydrate deposits: a review of in situ properties[J]. The journal of physical chemistry, 1983, 87(21): 4180-4185. DOI: 10.1021/j100244a041.
[7] 邢兰昌, 祁雨, 朱泰, 等. 含甲烷水合物沉积物电-声响应特性联合探测: 装置开发与实验研究[J]. 新能源进展, 2018, 6(2): 119-129. DOI: 10.3969/j.issn.2095- 560X.2018.02.006.
[8] 王彩程, 邢兰昌, 陈强, 等. 含甲烷水合物多孔介质的复电阻率频散特性与模型[J]. 科学技术与工程, 2017, 17(18): 46-54. DOI: 10.3969/j.issn.1671-1815.2017.18.007.
[9] PRIEGNITZ M, THALER J, SPANGENBERG E, et al.Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data[J]. Geophysical journal international, 2015, 202(3): 1599-1612. DOI: 10.1093/gji/ggv245.
[10] 李栋梁, 卢静生, 梁德青. 祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响[J]. 新能源进展, 2016, 4(3): 179-183. DOI: 10.3969/j.issn.2095-560X. 2016.03.003.
[11] ATTIAS E, WEITEMEYER K, HÖLZ S, et al. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean- bottom receiver data[J]. Geophysical journal international, 2018, 214(3): 1701-1714. DOI: 10.1093/gji/ggy227.
[12] 陈玉凤, 吴能友, 梁德青, 等. 基于分形孔隙模型的含天然气水合物沉积物电阻率数值模拟[J]. 天然气工业, 2018, 38(11): 128-134. DOI: 10.3787/j.issn.1000-0976.2018.11.017.
[13] 陈强, 刘昌岭, 邢兰昌, 等. 孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J]. 石油学报, 2016, 37(2): 222-229. DOI: 10.7623/syxb201602008.
[14] 李小森, 冯景春, 李刚, 等. 电阻率在天然气水合物三维生成及开采过程中的变化特性模拟实验[J]. 天然气工业, 2013, 33(7): 18-23. DOI: 10.3787/j.issn.1000-0976. 2013.07.003.
[15] 董怀民, 孙建孟. 天然气水合物岩石物理实验进展[J]. 科学技术与工程, 2017, 17(18): 132-141. DOI: 10.3969/j.issn.1671-1815.2017.18.020.
[16] 郭平, 熊枫. 多孔介质中动态合成天然气水合物的新方法[J]. 科学技术与工程, 2017, 17(10): 173-176. DOI: 10.3969/j.issn.1671-1815.2017.10.029.
[17] SAHOO S K, MARÍN-MORENO H, NORTH L J, et al. Presence and consequences of coexisting methane gas with hydrate under two phase water-hydrate stability conditions[J]. Journal of geophysical research: solid earth, 2018, 123(5): 3377-3390. DOI: 10.1029/2018JB015598.
[18] 蒲毅彬, 邢莉莉, 吴青柏, 等. 天然气水合物CT实验方法初步研究[J]. CT理论与应用研究, 2005, 14(2): 54-62. DOI: 10.3969/j.issn.1004-4140.2005.02.012.
[19] 李承峰, 胡高伟, 业渝光, 等. X射线计算机断层扫描测定沉积物中水合物微观分布[J]. 光电子·激光, 2013, 24(3): 551-557. DOI: 10.16136/j.joel.2013.03.007.
[20] 胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014, 57(5): 1675-1682. DOI: 10.6038/cjg20140530.
[21] 李晨安, 李承峰, 刘昌岭, 等. X-CT法研究砂岩中甲烷水合物动态分布规律[J]. 核电子学与探测技术, 2018, 38(2): 266-270. DOI:10.3969/j.issn.0258-0934.2018. 02.023.
[22] LI C F, LIU C L, HU G W, et al.Investigation on the multiparameter of hydrate-bearing sands using Nano-focus X-ray computed tomography[J]. Journal of geophysical research: solid earth, 2019, 124(3): 2286-2296. DOI: 10.1029/2018JB015849.
[23] PERMYAKOV M E, MANCHENKO N A, DUCHKOV A D, et al.Laboratory modeling and measurement of the electrical resistivity of hydrate-bearing sand samples[J]. Russian geology and geophysics, 2017, 58(5): 642-649. DOI: 10.1016/j.rgg.2017.04.005.
[24] DVORKIN J, PRASAD M, SAKAI A, et al.Elasticity of marine sediments: rock physics modeling[J]. Geophysical research letters, 1999, 26(12): 1781-1784. DOI: 10.1029/ 1999gl900332.
Outlines

/