[1] 于法稳, 杨果. 农作物秸秆资源化利用的现状、困境及对策[J]. 社会科学家, 2018(2): 33-39. DOI: 10.3969/j. issn.1002-3240.2018.02.005.
[2] BALAT M.Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review[J]. Energy conversion and management, 2011, 52(2): 858-875. DOI: 10.1016/j.enconman.2010.08.013.
[3] ALONSO D M, BOND J Q, DUMESIC J A.Catalytic conversion of biomass to biofuels[J]. Green chemistry, 2010, 12(9): 1493-1513. DOI: 10.1039/C004654J.
[4] LI H X, XU Z W, YAN P F, et al.A catalytic aldol condensation system enables one pot conversion of biomass saccharides to biofuel intermediates[J]. Green chemistry, 2017, 19(7): 1751-1756. DOI: 10.1039/C7GC00362E.
[5] SOMERVILLE C, YOUNGS H, TAYLOR C, et al.Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329(5993): 790-792. DOI: 10.1126/science.1189268.
[6] AGBOR V B, CICEK N, SPARLING R, et al.Biomass pretreatment: Fundamentals toward application[J]. Biotechnology advances, 2011, 29(6): 675-685. DOI: 10.1016/j.biotechadv.2011.05.005.
[7] HIMMEL M E, DING S Y, JOHNSON D K, et al.Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807. DOI: 10.1126/science.1137016.
[8] 黄爱玲, 周美华. 玉米秸秆水解的酶法与稀酸法比较[J]. 东华大学学报(自然科学版), 2005, 31(5): 110-114. DOI: 10.3969/j.issn.1671-0444.2005.05.024.
[9] 徐晴, 袁瀚, 杨平, 等. 响应曲面优化秸秆稀酸水解工艺用于发酵产壳聚糖[J]. 生物加工过程, 2015, 13(6): 1-5. DOI: 10.3969/j.issn.1672-3678.2015.06.001.
[10] BARAL N R, SHAH A.Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover[J]. Bioresource technology, 2017, 232: 331-343. DOI: 10.1016/j.biortech.2017.02.068.
[11] KUMAR V, KRISHANIA M, SANDHU P P, et al.Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192[J]. Bioresource technology, 2018, 251: 416-419. DOI: 10.1016/j.biortech.2017.11.039.
[12] MUSSATTO S I, ROBERTO I C.Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review[J]. Bioresource technology, 2004, 93(1): 1-10. DOI: 10.1016/j.biortech. 2003.10.005.
[13] MONLAU F, SAMBUSITI C, BARAKAT A, et al.Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review[J]. Biotechnology advances, 2014, 32(5): 934-951. DOI: 10.1016/j.biotechadv.2014.04.007.
[14] 庄军平, 林鹿, 庞春生, 等. 木质纤维素稀水解液脱毒研究进展[J]. 现代化工, 2009, 29(2): 19-23. DOI: 10.3321/j.issn:0253-4320.2009.02.005.
[15] 承玲, 许正文, 韩青, 等. 超高交联树脂的功能基化及应用研究进展[J]. 高分子通报, 2014(3): 23-29. DOI: 10.14028/j.cnki.1003-3726.2014.03.003.
[16] 豆宝娟, 郝郑平, 梁晓霞. 一步法合成多级孔超高交联吸附树脂[J]. 功能材料, 2014, 45(1): 1114-1116, 1121. DOI: 10.3969/j.issn.1001-9731.2014.01.025.
[17] WANG T, SHEN C H, WANG N, et al.Adsorption of 3-Aminoacetanilide from aqueous solution by chemically modified hyper-crosslinked resins: Adsorption equilibrium, thermodynamics and selectivity[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2019, 575: 346-351. DOI: 10.1016/j.colsurfa.2019.05.029.
[18] LIN X Q, HUANG Q L, QI G X, et al.Adsorption behavior of levulinic acid onto microporous hyper-cross- linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies[J]. Chemosphere, 2017, 171: 231-239. DOI: 10.1016/j.chemosphere.2016.12.084.
[19] WANG W Q, WANG J H, CHEN J G, et al.Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical engineering journal, 2015, 281: 34-41. DOI: 10.1016/j.cej.2015.06.095.
[20] SHI S L, ZHANG H R, HUANG C, et al.Purification of lignocellulose hydrolysate by org-attapulgite/(divinyl benzene-styrene-methyl acrylate) composite adsorbent[J]. Bioresources, 2016, 11(4): 8664-8675. DOI: 10.15376/ biores.11.4.8664-8675.
[21] 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. DOI: 10.3969/j.issn.2095-560X.2018.05.010.
[22] UNREAN P, KETSUB N.Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse[J]. Industrial crops and products, 2018, 123: 238-246. DOI: 10.1016/j.indcrop.2018.06.071.
[23] ALMEIDA J R M, MODIG T, PETERSSON A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. Journal of chemical technology and biotechnology, 2007, 82(4): 340-349. DOI: 10.1002/jctb.1676.
[24] CANILHA L, DE ALMEIDA E SILVA J B, SOLENZAL A I N. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production[J]. Process biochemistry, 2004, 39(12): 1909-1912. DOI: 10.1016/j.procbio.2003.09.009.
[25] HUANG Q L, LIN X Q, XIONG L, et al.Equilibrium, kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self- synthesized macro/mesoporous resin[J]. RSC advances, 2017, 7(39): 23896-23906. DOI: 10.1039/C7RA01058C.
[26] CHEN H L, ZHAO X, LIU Y, et al.Ligninases remove phenolic inhibitors and facilitate yeast growth in lignocellulosic hydrolysate[J]. Holzforschung, 2019, 73(7): 681-687. DOI: 10.1515/hf-2018-0180.
[27] CHEN X F, ZHANG L Q, HUANG C, et al.Adsorption study of acid soluble lignin removal from sugarcane bagasse hydrolysate by a self-synthesized resin for lipid production[J]. Applied biochemistry and biotechnology, 2019, 188(3): 585-601. DOI: 10.1007/s12010-018-02939-2.
[28] CARTER B, SQUILLACE P, GILCREASE P C, et al.Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency[J]. Biotechnology and bioengineering, 2011, 108(9): 2053-2060. DOI: 10.1002/bit.23152.
[29] LARSSON S, PALMQVIST E, HAHN-HÄGERDAL B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enzyme and microbial technology, 1999, 24(3/4): 151-159. DOI: 10.1016/S0141-0229(98)00101-X.
[30] FAYET A, TEIXEIRA A R S, ALLAIS F, et al. Detoxification of highly acidic hemicellulosic hydrolysate from wheat straw by diananofiltration with a focus on phenolic compounds[J]. Journal of membrane science, 2018, 566: 112-121. DOI: 10.1016/j.memsci.2018.08.045.
[31] FREITAS J V, FARINAS C S.Sugarcane bagasse fly ash as a no-cost adsorbent for removal of phenolic inhibitors and improvement of biomass saccharification[J]. ACS sustainable chemistry & engineering, 2017, 5(12): 11727-11736. DOI: 10.1021/acssuschemeng.7b03214.
[32] RAJENDRAN K, DRIELAK E, VARMA V S, et al.Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production-a review[J]. Biomass conversion and biorefinery, 2018, 8(2): 471-483. DOI: 10.1007/s13399-017-0269-3.
[33] GIRALDELI L D, FONSECA B C, REGINATTO V.Mixtures of 5-hydroxymethylfurfural, levulinic acid, and formic acid have different impact on H2-producing Clostridium strains[J]. International journal of hydrogen energy, 2018, 43(49): 22159-22169. DOI: 10.1016/j.ijhydene.2018.10.051.
[34] JONSSON L J, MARTÍN C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource technology, 2016, 199: 103-112. DOI: 10.1016/j.biortech.2015.10.009.
[35] HUANG C, ZHU D H, WU H, et al.Evaluating the influence of inhibitors present in lignocellulosic hydrolysates on the cell membrane integrity of oleaginous yeast Trichosporon fermentans by flow cytometry[J]. Process biochemistry, 2014, 49(3): 395-401. DOI: 10.1016/j.procbio.2013.12.007.
[36] CASEY E, SEDLAK M, HO N W Y, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J]. FEMS yeast research, 2010, 10(4): 385-393. DOI: 10.1111/j.1567-1364.2010.00623.x.
[37] HUANG C, WU H, LIU Z J, et al.Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans[J]. Biotechnology for biofuels, 2012, 5: 4. DOI: 10.1186/1754-6834-5-4.
[38] HUANG C, WU H, SMITH T J, et al.In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans[J]. Biotechnology letters, 2012, 34(9): 1637-1642. DOI: 10.1007/s10529-012-0948-x.
[39] HUANG C, WANG C, XIONG L, et al.Elucidating the beneficial effect of corncob acid hydrolysate environment on lipid fermentation of Trichosporon dermatis by method of cell biology[J]. Applied biochemistry and biotechnology, 2016, 178(7): 1420-1429. DOI: 10.1007/s12010-015-1956-9.
[40] FLETCHER E, GAO K, MERCURIO K, et al.Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde[J]. Metabolic engineering, 2019, 52: 98-109. DOI: 10.1016/j.ymben.2018.11.010.
[41] XUE S, JONES A D, SOUSA L, et al.Water-soluble phenolic compounds produced from extractive ammonia pretreatment exerted binary inhibitory effects on yeast fermentation using synthetic hydrolysate[J]. PLoS one, 2018, 13(3): e0194012. DOI: 10.1371/journal.pone.0194012.
[42] CANTARELLA M, CANTARELLA L, GALLIFUOCO A, et al.Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF[J]. Process biochemistry, 2004, 39(11): 1533-1542. DOI: 10.1016/ S0032-9592(03)00285-1.
[43] KIM D.Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review[J]. Molecules, 2018, 23(2): E309. DOI: 10.3390/ molecules23020309.
[44] PARAWIRA W, TEKERE M.Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review[J]. Critical reviews in biotechnology, 2011, 31(1): 20-31. DOI: 10.3109/07388551003757816.
[45] JÖNSSON L J, PALMQVIST E, NILVEBRANT N O, et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor[J]. Applied microbiology and biotechnology, 1998, 49(6): 691-697. DOI: 10.1007/s002530051233.
[46] 陈建军, 刘梁涛, 曹香林. 高效木质素降解菌的筛选及产漆酶条件的研究[J]. 甘肃农业大学学报, 2018, 53(4): 130-136. DOI: 10.3969/j.issn.1003-4315.2018.04.020.
[47] 康跃, 李素艳, 孙向阳, 等. 园林废弃物木质素降解真菌的筛选、鉴别及其能力研究[J]. 林业科学研究, 2019, 32(3): 80-87. DOI: 10.13275/j.cnki.lykxyj.2019.03.011.
[48] LI X M, XIONG L, CHEN X F, et al.Effects of acetic acid on growth and lipid production by Cryptococcus albidus[J]. Journal of the American oil chemists’ society, 2015, 92(8): 1113-1118. DOI: 10.1007/s11746-015-2685-5.
[49] JURADO M, PRIETO A, MARTÍNEZ-ALCALÁ A, et al. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol[J]. Bioresource technology, 2009, 100(24): 6378-6384. DOI: 10.1016/j.biortech.2009.07.049.
[50] SINGH B, VERMA A, POOJA, et al. A biotechnological approach for degradation of inhibitory compounds present in lignocellulosic biomass hydrolysate liquor using Bordetella sp. BTIITR[J]. Chemical engineering journal, 2017, 328: 519-526. DOI: 10.1016/j.cej.2017.07.059.
[51] CHEN X F, HUANG C, YANG X Y, et al.Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate[J]. Bioresource technology, 2013, 143: 18-24. DOI: 10.1016/j.biortech.2013.05.102.
[52] MARTINEZ A, RODRIGUEZ M E, YORK S W, et al.Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates[J]. Biotechnology and bioengineering, 2000, 69(5): 526-536. DOI: 10.1002/1097-0290(20000905)69: 5<526::AID-BIT7>3.0.CO;2-E.
[53] MOHAGHEGHI A, RUTH M, SCHELL D J.Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields[J]. Process biochemistry, 2006, 41(8): 1806-1811. DOI: 10.1016/j. procbio.2006.03.028.
[54] ZHANG Y Q, LI M, WANG Y F, et al.Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption[J]. Bioresource technology, 2015, 197: 276-283. DOI: 10.1016/j.biortech.2015.08.097.
[55] ZHU J J, ZHU Y Y, ZHANG L L, et al.Sodium hydroxide regeneration of trialkylamine extractant containing inhibitors from corn stover prehydrolyzate by liquid-liquid extraction[J]. Separation and purification technology, 2014, 126: 39-43. DOI: 10.1016/j.seppur.2014.02.014.
[56] SARAWAN C, SUINYUY T N, SEWSYNKER-SUKAI Y, et al.Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production[J]. Bioresource technology, 2019, 286: 121403. DOI: 10.1016/j.biortech.2019.121403.
[57] LIN X Q, XIONG L, QI G X, et al.Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent[J]. ACS sustainable chemistry & engineering, 2015, 3(4): 702-709. DOI: 10.1021/acssuschemeng.5b00010.
[58] MOHAMED M H, WILSON L D.Porous copolymer resins: tuning pore structure and surface area with non reactive porogens[J]. Nanomaterials, 2012, 2(2): 163-186. DOI: 10.3390/nano2020163.
[59] 张全兴, 张政朴, 李爱民, 等. 我国离子交换与吸附树脂的发展历程回顾与展望[J]. 高分子学报, 2018(7): 814-828. DOI: 10.11777/j.issn1000-3304.2018.17317.
[60] HUANG Q L, ZHANG H R, XIONG L, et al.Controllable synthesis of styrene-divinylbenzene adsorption resins and the effect of textural properties on removal performance of fermentation inhibitors from rice straw hydrolysate[J]. Industrial & engineering chemistry research, 2018, 57(14): 5119-5127. DOI: 10.1021/acs.iecr.8b00545.
[61] LI Y, HUANG J H, LIU J B, et al.Adsorption of berberine hydrochloride, ligustrazine hydrochloride, colchicine, and matrine alkaloids on macroporous resins[J]. Journal of chemical & engineering data, 2013, 58(5): 1271-1279. DOI: 10.1021/je400057w.
[62] SHAO L S, WANG S Q, LIU M Q, et al.Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture[J]. Chemical engineering journal, 2018, 339: 509-518. DOI: 10.1016/j.cej.2018.01.145.
[63] HUANG J H, HUANG K L, LIU S Q.Tertiary amino groups modified macroporous crosslinked poly(styrene- co-divinylbenzene) and its oxidized adsorbent: Synthesis, characterization, and adsorption behavior[J]. Journal of hazardous materials, 2009, 162(2/3): 771-776. DOI: 10.1016/j.jhazmat.2008.05.100.
[64] 何炳林. 吸附与吸附树脂[J]. 石油化工, 1977(3): 263-283.
[65] 黄燕秋, 谢志茹, 朴胜华, 等. 大孔吸附树脂在中药纯化中的应用进展[J]. 广东化工, 2018, 45(8): 130-132. DOI: 10.3969/j.issn.1007-1865.2018.08.059.
[66] 祁晓东. 利用大孔树脂回收废水中的间羟基苯甲酸[J]. 绿色科技, 2012(6): 196-197. DOI: 10.3969/j.issn.1674- 9944.2012.06.093.
[67] 韩飞. 新型吸附树脂的设计、制备及其对酚类化合物的吸附性能研究[D]. 青岛: 青岛科技大学, 2017.
[68] 张旭, 陈丹, 曹丽娟, 等. 5种大孔树脂纯化鲜核桃青皮汁多酚工艺的比较[J]. 中成药, 2016, 38(8): 1852-1855. DOI: 10.3969/j.issn.1001-1528.2016.08.042.
[69] HUANG J H, JIN X Y, DENG S G.Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions[J]. Chemical engineering journal, 2012, 192: 192-200. DOI: 10.1016/j.cej.2012.03.078.
[70] HUANG J H, LI Y.Hydrophobic-hydrophilic interpenetrating polymer networks (IPNs) composed of hydrophobic polystyrene (PST) and hydrophilic polyacryldiethylenetriamine (PADETA) networks and their high efficient adsorption to salicylic acid[J]. Fluid phase equilibria, 2016, 427: 384-389. DOI: 10.1016/j. fluid.2016.08.005.
[71] HUANG J H, YANG L, WANG X M, et al.A novel post-cross-linked polystyrene/polyacryldiethylenetriamine (PST_pc/PADETA) interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solutions[J]. Chemical engineering journal, 2014, 248: 216-222. DOI: 10.1016/j.cej.2014.03.061.
[72] HATANO K I, AOYAGI N, MIYAKAWA T, et al.Evaluation of nonionic adsorbent resins for removal of inhibitory compounds from corncob hydrolysate for ethanol fermentation[J]. Bioresource technology, 2013, 149: 541-545. DOI: 10.1016/j.biortech.2013.08.166.
[73] YU Y, CHRISTOPHER L P.Detoxification of hemicellulose-rich poplar hydrolysate by polymeric resins for improved ethanol fermentability[J]. Fuel, 2017, 203: 187-196. DOI: 10.1016/j.fuel.2017.04.118.
[74] XIAO G Q, WEN R M, YOU P Q, et al.Adsorption of phenol onto four hyper-cross-linked polymeric adsorbents: Effect of hydrogen bonding receptor in micropores on adsorption capacity[J]. Microporous and mesoporous materials, 2017, 239: 40-44. DOI: 10.1016/j.micromeso.2016.09.044.