Welcome to visit Advances in New and Renewable Energy!

Research Advances on Adsorption Resin in Detoxification of Straw Dilute Acid Hydrolysate

  • ZHANG Li-quan ,
  • CHEN Xue-fang ,
  • WANG Can ,
  • XIONG Lian ,
  • CHEN Xin-de
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2019-07-31

  Online published: 2019-12-31

Abstract

During the process of straw dilute-acid hydrolysis, by-products such as formic acid, acetic acid, levulinic acid, furfural and acid-soluble lignin will be inevitably produced, which will have a serious negative impact on the subsequent microbial fermentation process. Therefore, detoxification of the hydrolysate is an essential and important step for microbial fermentation. In this paper, the production, types and inhibition mechanism of fermentation inhibitors in dilute acid hydrolysate of straw were reviewed, and the detoxification methods of dilute acid hydrolysate of straw were summarized. On this basis, the application of adsorbent resin in detoxification of dilute acid hydrolysate of straw was introduced.

Cite this article

ZHANG Li-quan , CHEN Xue-fang , WANG Can , XIONG Lian , CHEN Xin-de . Research Advances on Adsorption Resin in Detoxification of Straw Dilute Acid Hydrolysate[J]. Advances in New and Renewable Energy, 2019 , 7(6) : 505 -512 . DOI: 10.3969/j.issn.2095-560X.2019.06.006

References

[1] 于法稳, 杨果. 农作物秸秆资源化利用的现状、困境及对策[J]. 社会科学家, 2018(2): 33-39. DOI: 10.3969/j. issn.1002-3240.2018.02.005.
[2] BALAT M.Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review[J]. Energy conversion and management, 2011, 52(2): 858-875. DOI: 10.1016/j.enconman.2010.08.013.
[3] ALONSO D M, BOND J Q, DUMESIC J A.Catalytic conversion of biomass to biofuels[J]. Green chemistry, 2010, 12(9): 1493-1513. DOI: 10.1039/C004654J.
[4] LI H X, XU Z W, YAN P F, et al.A catalytic aldol condensation system enables one pot conversion of biomass saccharides to biofuel intermediates[J]. Green chemistry, 2017, 19(7): 1751-1756. DOI: 10.1039/C7GC00362E.
[5] SOMERVILLE C, YOUNGS H, TAYLOR C, et al.Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329(5993): 790-792. DOI: 10.1126/science.1189268.
[6] AGBOR V B, CICEK N, SPARLING R, et al.Biomass pretreatment: Fundamentals toward application[J]. Biotechnology advances, 2011, 29(6): 675-685. DOI: 10.1016/j.biotechadv.2011.05.005.
[7] HIMMEL M E, DING S Y, JOHNSON D K, et al.Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807. DOI: 10.1126/science.1137016.
[8] 黄爱玲, 周美华. 玉米秸秆水解的酶法与稀酸法比较[J]. 东华大学学报(自然科学版), 2005, 31(5): 110-114. DOI: 10.3969/j.issn.1671-0444.2005.05.024.
[9] 徐晴, 袁瀚, 杨平, 等. 响应曲面优化秸秆稀酸水解工艺用于发酵产壳聚糖[J]. 生物加工过程, 2015, 13(6): 1-5. DOI: 10.3969/j.issn.1672-3678.2015.06.001.
[10] BARAL N R, SHAH A.Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover[J]. Bioresource technology, 2017, 232: 331-343. DOI: 10.1016/j.biortech.2017.02.068.
[11] KUMAR V, KRISHANIA M, SANDHU P P, et al.Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192[J]. Bioresource technology, 2018, 251: 416-419. DOI: 10.1016/j.biortech.2017.11.039.
[12] MUSSATTO S I, ROBERTO I C.Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review[J]. Bioresource technology, 2004, 93(1): 1-10. DOI: 10.1016/j.biortech. 2003.10.005.
[13] MONLAU F, SAMBUSITI C, BARAKAT A, et al.Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review[J]. Biotechnology advances, 2014, 32(5): 934-951. DOI: 10.1016/j.biotechadv.2014.04.007.
[14] 庄军平, 林鹿, 庞春生, 等. 木质纤维素稀水解液脱毒研究进展[J]. 现代化工, 2009, 29(2): 19-23. DOI: 10.3321/j.issn:0253-4320.2009.02.005.
[15] 承玲, 许正文, 韩青, 等. 超高交联树脂的功能基化及应用研究进展[J]. 高分子通报, 2014(3): 23-29. DOI: 10.14028/j.cnki.1003-3726.2014.03.003.
[16] 豆宝娟, 郝郑平, 梁晓霞. 一步法合成多级孔超高交联吸附树脂[J]. 功能材料, 2014, 45(1): 1114-1116, 1121. DOI: 10.3969/j.issn.1001-9731.2014.01.025.
[17] WANG T, SHEN C H, WANG N, et al.Adsorption of 3-Aminoacetanilide from aqueous solution by chemically modified hyper-crosslinked resins: Adsorption equilibrium, thermodynamics and selectivity[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2019, 575: 346-351. DOI: 10.1016/j.colsurfa.2019.05.029.
[18] LIN X Q, HUANG Q L, QI G X, et al.Adsorption behavior of levulinic acid onto microporous hyper-cross- linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies[J]. Chemosphere, 2017, 171: 231-239. DOI: 10.1016/j.chemosphere.2016.12.084.
[19] WANG W Q, WANG J H, CHEN J G, et al.Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical engineering journal, 2015, 281: 34-41. DOI: 10.1016/j.cej.2015.06.095.
[20] SHI S L, ZHANG H R, HUANG C, et al.Purification of lignocellulose hydrolysate by org-attapulgite/(divinyl benzene-styrene-methyl acrylate) composite adsorbent[J]. Bioresources, 2016, 11(4): 8664-8675. DOI: 10.15376/ biores.11.4.8664-8675.
[21] 蒋丽群, 郑安庆, 王小波, 等. 生物质定向快速热解制备左旋葡聚糖和芳烃的研究进展[J]. 新能源进展, 2018, 6(5): 402-409. DOI: 10.3969/j.issn.2095-560X.2018.05.010.
[22] UNREAN P, KETSUB N.Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse[J]. Industrial crops and products, 2018, 123: 238-246. DOI: 10.1016/j.indcrop.2018.06.071.
[23] ALMEIDA J R M, MODIG T, PETERSSON A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae[J]. Journal of chemical technology and biotechnology, 2007, 82(4): 340-349. DOI: 10.1002/jctb.1676.
[24] CANILHA L, DE ALMEIDA E SILVA J B, SOLENZAL A I N. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production[J]. Process biochemistry, 2004, 39(12): 1909-1912. DOI: 10.1016/j.procbio.2003.09.009.
[25] HUANG Q L, LIN X Q, XIONG L, et al.Equilibrium, kinetic and thermodynamic studies of acid soluble lignin adsorption from rice straw hydrolysate by a self- synthesized macro/mesoporous resin[J]. RSC advances, 2017, 7(39): 23896-23906. DOI: 10.1039/C7RA01058C.
[26] CHEN H L, ZHAO X, LIU Y, et al.Ligninases remove phenolic inhibitors and facilitate yeast growth in lignocellulosic hydrolysate[J]. Holzforschung, 2019, 73(7): 681-687. DOI: 10.1515/hf-2018-0180.
[27] CHEN X F, ZHANG L Q, HUANG C, et al.Adsorption study of acid soluble lignin removal from sugarcane bagasse hydrolysate by a self-synthesized resin for lipid production[J]. Applied biochemistry and biotechnology, 2019, 188(3): 585-601. DOI: 10.1007/s12010-018-02939-2.
[28] CARTER B, SQUILLACE P, GILCREASE P C, et al.Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency[J]. Biotechnology and bioengineering, 2011, 108(9): 2053-2060. DOI: 10.1002/bit.23152.
[29] LARSSON S, PALMQVIST E, HAHN-HÄGERDAL B, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood[J]. Enzyme and microbial technology, 1999, 24(3/4): 151-159. DOI: 10.1016/S0141-0229(98)00101-X.
[30] FAYET A, TEIXEIRA A R S, ALLAIS F, et al. Detoxification of highly acidic hemicellulosic hydrolysate from wheat straw by diananofiltration with a focus on phenolic compounds[J]. Journal of membrane science, 2018, 566: 112-121. DOI: 10.1016/j.memsci.2018.08.045.
[31] FREITAS J V, FARINAS C S.Sugarcane bagasse fly ash as a no-cost adsorbent for removal of phenolic inhibitors and improvement of biomass saccharification[J]. ACS sustainable chemistry & engineering, 2017, 5(12): 11727-11736. DOI: 10.1021/acssuschemeng.7b03214.
[32] RAJENDRAN K, DRIELAK E, VARMA V S, et al.Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production-a review[J]. Biomass conversion and biorefinery, 2018, 8(2): 471-483. DOI: 10.1007/s13399-017-0269-3.
[33] GIRALDELI L D, FONSECA B C, REGINATTO V.Mixtures of 5-hydroxymethylfurfural, levulinic acid, and formic acid have different impact on H2-producing Clostridium strains[J]. International journal of hydrogen energy, 2018, 43(49): 22159-22169. DOI: 10.1016/j.ijhydene.2018.10.051.
[34] JONSSON L J, MARTÍN C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects[J]. Bioresource technology, 2016, 199: 103-112. DOI: 10.1016/j.biortech.2015.10.009.
[35] HUANG C, ZHU D H, WU H, et al.Evaluating the influence of inhibitors present in lignocellulosic hydrolysates on the cell membrane integrity of oleaginous yeast Trichosporon fermentans by flow cytometry[J]. Process biochemistry, 2014, 49(3): 395-401. DOI: 10.1016/j.procbio.2013.12.007.
[36] CASEY E, SEDLAK M, HO N W Y, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J]. FEMS yeast research, 2010, 10(4): 385-393. DOI: 10.1111/j.1567-1364.2010.00623.x.
[37] HUANG C, WU H, LIU Z J, et al.Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans[J]. Biotechnology for biofuels, 2012, 5: 4. DOI: 10.1186/1754-6834-5-4.
[38] HUANG C, WU H, SMITH T J, et al.In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans[J]. Biotechnology letters, 2012, 34(9): 1637-1642. DOI: 10.1007/s10529-012-0948-x.
[39] HUANG C, WANG C, XIONG L, et al.Elucidating the beneficial effect of corncob acid hydrolysate environment on lipid fermentation of Trichosporon dermatis by method of cell biology[J]. Applied biochemistry and biotechnology, 2016, 178(7): 1420-1429. DOI: 10.1007/s12010-015-1956-9.
[40] FLETCHER E, GAO K, MERCURIO K, et al.Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde[J]. Metabolic engineering, 2019, 52: 98-109. DOI: 10.1016/j.ymben.2018.11.010.
[41] XUE S, JONES A D, SOUSA L, et al.Water-soluble phenolic compounds produced from extractive ammonia pretreatment exerted binary inhibitory effects on yeast fermentation using synthetic hydrolysate[J]. PLoS one, 2018, 13(3): e0194012. DOI: 10.1371/journal.pone.0194012.
[42] CANTARELLA M, CANTARELLA L, GALLIFUOCO A, et al.Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF[J]. Process biochemistry, 2004, 39(11): 1533-1542. DOI: 10.1016/ S0032-9592(03)00285-1.
[43] KIM D.Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review[J]. Molecules, 2018, 23(2): E309. DOI: 10.3390/ molecules23020309.
[44] PARAWIRA W, TEKERE M.Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review[J]. Critical reviews in biotechnology, 2011, 31(1): 20-31. DOI: 10.3109/07388551003757816.
[45] JÖNSSON L J, PALMQVIST E, NILVEBRANT N O, et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor[J]. Applied microbiology and biotechnology, 1998, 49(6): 691-697. DOI: 10.1007/s002530051233.
[46] 陈建军, 刘梁涛, 曹香林. 高效木质素降解菌的筛选及产漆酶条件的研究[J]. 甘肃农业大学学报, 2018, 53(4): 130-136. DOI: 10.3969/j.issn.1003-4315.2018.04.020.
[47] 康跃, 李素艳, 孙向阳, 等. 园林废弃物木质素降解真菌的筛选、鉴别及其能力研究[J]. 林业科学研究, 2019, 32(3): 80-87. DOI: 10.13275/j.cnki.lykxyj.2019.03.011.
[48] LI X M, XIONG L, CHEN X F, et al.Effects of acetic acid on growth and lipid production by Cryptococcus albidus[J]. Journal of the American oil chemists’ society, 2015, 92(8): 1113-1118. DOI: 10.1007/s11746-015-2685-5.
[49] JURADO M, PRIETO A, MARTÍNEZ-ALCALÁ A, et al. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol[J]. Bioresource technology, 2009, 100(24): 6378-6384. DOI: 10.1016/j.biortech.2009.07.049.
[50] SINGH B, VERMA A, POOJA, et al. A biotechnological approach for degradation of inhibitory compounds present in lignocellulosic biomass hydrolysate liquor using Bordetella sp. BTIITR[J]. Chemical engineering journal, 2017, 328: 519-526. DOI: 10.1016/j.cej.2017.07.059.
[51] CHEN X F, HUANG C, YANG X Y, et al.Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate[J]. Bioresource technology, 2013, 143: 18-24. DOI: 10.1016/j.biortech.2013.05.102.
[52] MARTINEZ A, RODRIGUEZ M E, YORK S W, et al.Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates[J]. Biotechnology and bioengineering, 2000, 69(5): 526-536. DOI: 10.1002/1097-0290(20000905)69: 5<526::AID-BIT7>3.0.CO;2-E.
[53] MOHAGHEGHI A, RUTH M, SCHELL D J.Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields[J]. Process biochemistry, 2006, 41(8): 1806-1811. DOI: 10.1016/j. procbio.2006.03.028.
[54] ZHANG Y Q, LI M, WANG Y F, et al.Simultaneous concentration and detoxification of lignocellulosic hydrolyzates by vacuum membrane distillation coupled with adsorption[J]. Bioresource technology, 2015, 197: 276-283. DOI: 10.1016/j.biortech.2015.08.097.
[55] ZHU J J, ZHU Y Y, ZHANG L L, et al.Sodium hydroxide regeneration of trialkylamine extractant containing inhibitors from corn stover prehydrolyzate by liquid-liquid extraction[J]. Separation and purification technology, 2014, 126: 39-43. DOI: 10.1016/j.seppur.2014.02.014.
[56] SARAWAN C, SUINYUY T N, SEWSYNKER-SUKAI Y, et al.Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production[J]. Bioresource technology, 2019, 286: 121403. DOI: 10.1016/j.biortech.2019.121403.
[57] LIN X Q, XIONG L, QI G X, et al.Using butanol fermentation wastewater for biobutanol production after removal of inhibitory compounds by micro/mesoporous hyper-cross-linked polymeric adsorbent[J]. ACS sustainable chemistry & engineering, 2015, 3(4): 702-709. DOI: 10.1021/acssuschemeng.5b00010.
[58] MOHAMED M H, WILSON L D.Porous copolymer resins: tuning pore structure and surface area with non reactive porogens[J]. Nanomaterials, 2012, 2(2): 163-186. DOI: 10.3390/nano2020163.
[59] 张全兴, 张政朴, 李爱民, 等. 我国离子交换与吸附树脂的发展历程回顾与展望[J]. 高分子学报, 2018(7): 814-828. DOI: 10.11777/j.issn1000-3304.2018.17317.
[60] HUANG Q L, ZHANG H R, XIONG L, et al.Controllable synthesis of styrene-divinylbenzene adsorption resins and the effect of textural properties on removal performance of fermentation inhibitors from rice straw hydrolysate[J]. Industrial & engineering chemistry research, 2018, 57(14): 5119-5127. DOI: 10.1021/acs.iecr.8b00545.
[61] LI Y, HUANG J H, LIU J B, et al.Adsorption of berberine hydrochloride, ligustrazine hydrochloride, colchicine, and matrine alkaloids on macroporous resins[J]. Journal of chemical & engineering data, 2013, 58(5): 1271-1279. DOI: 10.1021/je400057w.
[62] SHAO L S, WANG S Q, LIU M Q, et al.Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture[J]. Chemical engineering journal, 2018, 339: 509-518. DOI: 10.1016/j.cej.2018.01.145.
[63] HUANG J H, HUANG K L, LIU S Q.Tertiary amino groups modified macroporous crosslinked poly(styrene- co-divinylbenzene) and its oxidized adsorbent: Synthesis, characterization, and adsorption behavior[J]. Journal of hazardous materials, 2009, 162(2/3): 771-776. DOI: 10.1016/j.jhazmat.2008.05.100.
[64] 何炳林. 吸附与吸附树脂[J]. 石油化工, 1977(3): 263-283.
[65] 黄燕秋, 谢志茹, 朴胜华, 等. 大孔吸附树脂在中药纯化中的应用进展[J]. 广东化工, 2018, 45(8): 130-132. DOI: 10.3969/j.issn.1007-1865.2018.08.059.
[66] 祁晓东. 利用大孔树脂回收废水中的间羟基苯甲酸[J]. 绿色科技, 2012(6): 196-197. DOI: 10.3969/j.issn.1674- 9944.2012.06.093.
[67] 韩飞. 新型吸附树脂的设计、制备及其对酚类化合物的吸附性能研究[D]. 青岛: 青岛科技大学, 2017.
[68] 张旭, 陈丹, 曹丽娟, 等. 5种大孔树脂纯化鲜核桃青皮汁多酚工艺的比较[J]. 中成药, 2016, 38(8): 1852-1855. DOI: 10.3969/j.issn.1001-1528.2016.08.042.
[69] HUANG J H, JIN X Y, DENG S G.Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions[J]. Chemical engineering journal, 2012, 192: 192-200. DOI: 10.1016/j.cej.2012.03.078.
[70] HUANG J H, LI Y.Hydrophobic-hydrophilic interpenetrating polymer networks (IPNs) composed of hydrophobic polystyrene (PST) and hydrophilic polyacryldiethylenetriamine (PADETA) networks and their high efficient adsorption to salicylic acid[J]. Fluid phase equilibria, 2016, 427: 384-389. DOI: 10.1016/j. fluid.2016.08.005.
[71] HUANG J H, YANG L, WANG X M, et al.A novel post-cross-linked polystyrene/polyacryldiethylenetriamine (PST_pc/PADETA) interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solutions[J]. Chemical engineering journal, 2014, 248: 216-222. DOI: 10.1016/j.cej.2014.03.061.
[72] HATANO K I, AOYAGI N, MIYAKAWA T, et al.Evaluation of nonionic adsorbent resins for removal of inhibitory compounds from corncob hydrolysate for ethanol fermentation[J]. Bioresource technology, 2013, 149: 541-545. DOI: 10.1016/j.biortech.2013.08.166.
[73] YU Y, CHRISTOPHER L P.Detoxification of hemicellulose-rich poplar hydrolysate by polymeric resins for improved ethanol fermentability[J]. Fuel, 2017, 203: 187-196. DOI: 10.1016/j.fuel.2017.04.118.
[74] XIAO G Q, WEN R M, YOU P Q, et al.Adsorption of phenol onto four hyper-cross-linked polymeric adsorbents: Effect of hydrogen bonding receptor in micropores on adsorption capacity[J]. Microporous and mesoporous materials, 2017, 239: 40-44. DOI: 10.1016/j.micromeso.2016.09.044.
Outlines

/