[1] AMARIS C, VALLÈS M, BOUROUIS M. Vapour absorption enhancement using passive techniques for absorption cooling/ heating technologies: a review[J]. Applied energy, 2018, 231: 826-853. DOI: 10.1016/j.apenergy.2018.09.071.
[2] SUN J, FU L, ZHANG S G.Experimental study on vertical vapor absorption into LiBr solution with and without additive[J]. Applied thermal engineering, 2011, 31(14/15): 2850-2854. DOI: 10.1016/j.applthermaleng.2011.05.010.
[3] ZHANG H, YIN D Z, YOU S J, et al.Experimental investigation of heat and mass transfer in a LiBr-H2O solution falling film absorber on horizontal tubes: comprehensive effects of tube types and surfactants[J]. Applied thermal engineering, 2019, 146: 203-211. DOI: 10.1016/j.applthermaleng.2018.09.127.
[4] ASFAND F, STIRIBA Y, BOUROUIS M.Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems[J]. Energy, 2016, 115: 781-790. DOI: 10.1016/j.energy.2016.08.103.
[5] ZAFARANI-MOATTAR M T, FROUZESH F. The study of vapor-liquid equilibria of 1-ethyl-3-methyl imidazolium chloride and 1-butyl-3-methyl imidazolium chloride in lithium bromide aqueous solutions and their corresponding binary systems at 298.15 K.[J]. Calphad, 2013, 40: 16-23. DOI: 10.1016/j.calphad.2012.11.002.
[6] ZAFARANI-MOATTAR M T, FROUZESH F, RAFIEE H R. The study of volumetric, acoustic and transport properties of ionic liquid, 1-butyl-3-methyl imidazolium chloride [Bmim][Cl] in aqueous lithium bromide solutions at T(298.15-318.15 K)[J]. Fluid phase equilibria, 2014, 376: 40-47. DOI: 10.1016/j.fluid.2014.05.028.
[7] RAFIEE H R, FROUZESH F.Study of apparent molar volumes for ionic liquid, 1-Ethyl-3-methyl imidazolium chloride in aqueous lithium nitrate, lithium bromide, and lithium chloride solutions at temperatures (298.15 to 318.15 K)[J]. Journal of chemical and engineering data, 2015, 60(10): 2958-2965. DOI: 10.1021/acs.jced.5b00329.
[8] RAFIEE H R, FROUZESH F.Vapor-liquid equilibria and volumetric properties for new working fluid ([C6H11N2][HSO4] + LiBr + H2O) and corresponding binary systems at different temperatures and ambient pressure[J]. Fluid phase equilibria, 2016, 429: 137-148. DOI: 10.1016/j.fluid.2016.08.036.
[9] KANG Y T, KIM H J, IL LEE K I. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process[J]. International journal of refrigeration, 2008, 31(5): 850-856. DOI: 10.1016/j. ijrefrig.2007.10.008.
[10] KIM H, JEONG J, KANG Y T.Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids[J]. International journal of refrigeration, 2012, 35(3): 645-651. DOI: 10.1016/j.ijrefrig.2011.11.018.
[11] 解国珍, 李国栋, 法晓明, 等. 纳米颗粒对溴化锂溶液发生温度的影响研究[J]. 制冷与空调, 2008, 8(S1): 80-82. DOI: 10.3969/j.issn.1009-8402.2008.z1.020.
[12] 解国珍, 褚伟鹏, 王刚, 等. 添加纳米粒子的溴化锂溶液传质特性[J]. 制冷学报, 2016, 37(4): 33-38. DOI: 10.3969/j.issn.0253-4339.2016.04.033.
[13] HAM J, KIM J, CHO H.Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution[J]. Applied thermal engineering, 2016, 108: 1020-1032. DOI: 10.1016/j.applthermaleng.2016.07.196.
[14] MORTAZAVI M, ISFAHANI R N, BIGHAM S, et al.Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure[J]. Energy, 2015, 87: 270-278. DOI: 10.1016/j.energy.2015.04.074.
[15] WU J F, YI Z Y, CHEN Y P, et al.Enhanced heat and mass transfer in alternating structure of tubes and longitudinal trough mesh packing in lithium bromide solution absorber[J]. International journal of refrigeration, 2015, 53: 34-41. DOI: 10.1016/j.ijrefrig.2015.01.011.
[16] PALACIOS E, IZQUIERDO M, LIZARTE R, et al.Lithium bromide absorption machines: pressure drop and mass transfer in solutions conical sheets[J]. Energy conversion and management, 2009, 50(7): 1802-1809. DOI: 10.1016/j.enconman.2009.03.023.
[17] GUTIÉRREZ-URUETA G, RODRÍGUEZ P, VENEGAS M, et al. Experimental performances of a LiBr-water absorption facility equipped with adiabatic absorber[J]. International journal of refrigeration, 2011, 34(8): 1749-1759. DOI: 10.1016/j.ijrefrig.2011.07.014.
[18] ISFAHANI R N, MOGHADDAM S.Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures[J]. International journal of heat and mass transfer, 2013, 63: 82-90. DOI: 10.1016/j.ijheatmasstransfer.2013.03.053.
[19] VENEGAS M, DE VEGA M, GARCÍA-HERNANDO N, et al. A simple model to predict the performance of a H2O-LiBr absorber operating with a microporous membrane[J]. Energy, 2016, 96: 383-393. DOI: 10.1016/j.energy.2015.12.059.
[20] VENEGAS M, DE VEGA M, GARCÍA-HERNANDO N. Parametric study of operating and design variables on the performance of a membrane-based absorber[J]. Applied thermal engineering, 2016, 98: 409-419. DOI: 10.1016/j.applthermaleng.2015.12.074.
[21] GARCÍA-HERNANDO N, DE VEGA M, VENEGAS M. Experimental characterisation of a novel adiabatic membrane-based micro-absorber using H2O-LiBr[J]. International journal of heat and mass transfer, 2019, 129: 1136-1143. DOI: 10.1016/j.ijheatmasstransfer.2018.10.046.
[22] LI W, WU X Y, LUO Z, et al.Falling water film evaporation on newly-designed enhanced tube bundles[J]. International journal of heat and mass transfer, 2011, 54(13/14): 2990-2997. DOI: 10.1016/j.ijheatmasstransfer.2011.02.052.
[23] MORTAZAVI M, SCHMID M, MOGHADDAM S.Compact and efficient generator for low grade solar and waste heat driven absorption systems[J]. Applied energy, 2017, 198: 173-179. DOI: 10.1016/j.apenergy.2017.04.054.
[24] HU T L, XIE X Y, JIANG Y.Design and experimental study of a plate-type falling-film generator for a LiBr/H2O absorption heat pump[J]. International journal of refrigeration, 2017, 74: 304-312. DOI: 10.1016/j.ijrefrig.2016.09.024.
[25] HU T L, XIE X Y, JIANG Y.A detachable plate falling film generator and condenser coupling using lithium bromide and water as working fluids[J]. International journal of refrigeration, 2019, 98: 120-128. DOI: 10.1016/j.ijrefrig.2018.10.007.
[26] 闫晓娜, 刘利华, 唐黎明. 套片蛇形管滴淋式发生器性能实验研究[J]. 低温工程, 2019(3): 46-52.
[27] LEE J H, KIM D H, KIM S M, et al.Heat transfer characteristics of a falling film generator for various configurations of heating tubes in an absorption chiller[J]. Applied thermal engineering, 2019, 148: 1407-1415. DOI: 10.1016/j.applthermaleng.2018.08.007.
[28] BIGHAM S, ISFAHANI R N, MOGHADDAM S.Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution[J]. Applied thermal engineering, 2014, 64(1/2): 371-375. DOI: 10.1016/j.applthermaleng.2013.12.031.
[29] IBARRA-BAHENA J, DEHESA-CARRASCO U, ROMERO R J, et al.Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems[J]. Experimental thermal and fluid science, 2017, 88: 145-159. DOI: 10.1016/j.expthermflusci.2017.05.024.
[30] IBARRA-BAHENA J, RIVERA W, ROMERO R J, et al.Novel intermittent absorption cooling system based on membrane separation process[J]. Applied thermal engineering, 2018, 136: 718-729. DOI: 10.1016/j.applthermaleng.2018. 03.039.
[31] VENEGAS M, GARCÍA-HERNANDO N, DE VEGA M. A parametric analysis on the effect of design and operating variables in a membrane-based desorber[J]. International journal of refrigeration, 2019, 99: 47-58. DOI: 10.1016/j.ijrefrig.2018.11.043.
[32] GARCÍA-RIVERA E, CASTRO J, FARNÓS J, et al. Numerical and experimental investigation of a vertical LiBr falling film absorber considering wave regimes and in presence of mist flow[J]. International journal of thermal sciences, 2016, 109: 342-361. DOI: 10.1016/j.ijthermalsci. 2016.05.029.
[33] 张治, 操瑞兵, 陈亚平, 等. 叉排管束与M-W引流丝网交替吸收器性能研究[J]. 太阳能学报, 2017, 38(2): 393-399.
[34] CHEN J F, DAI Y J, WANG H B, et al.Experimental investigation on a novel air-cooled single effect LiBr-H2O absorption chiller with adiabatic flash evaporator and adiabatic absorber for residential application[J]. Solar energy, 2018, 159: 579-587. DOI: 10.1016/j.solener.2017.11.029.
[35] CHEN J F, DAI Y J, WANG R Z.Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings[J]. Solar energy, 2017, 151: 110-118. DOI: 10.1016/j.solener.2017.05.029.
[36] LI M, XU C M, HASSANIEN R H E, et al. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system[J]. International journal of refrigeration, 2016, 71: 46-59. DOI: 10.1016/j.ijrefrig.2016.07.023.
[37] GEBRESLASSIE B H, MEDRANO M, BOER D.Exergy analysis of multi-effect water-LiBr absorption systems: from half to triple effect[J]. Renewable energy, 2010, 35(8): 1773-1782. DOI: 10.1016/j.renene.2010.01.009.
[38] SHE X H, YIN Y G, XU M F, et al.A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs[J]. International journal of refrigeration, 2015, 58: 219-234. DOI: 10.1016/j.ijrefrig.2015.06.016.
[39] CHAHARTAGHI M, GOLMOHAMMADI H, SHOJAEI A F.Performance analysis and optimization of new double effect lithium bromide-water absorption chiller with series and parallel flows[J]. International journal of refrigeration, 2019, 97: 73-87. DOI: 10.1016/j.ijrefrig.2018.08.011.
[40] 胡磊, 王晓. 复合式三效溴化锂吸收式制冷循环特性分析[J]. 建筑热能通风空调, 2018, 37(4): 1-5. DOI: 10.3969/j.issn.1003-0344.2018.04.001.
[41] AZHAR, SIDDIQUI M A. Exergy analysis of single to triple effect lithium bromide-water vapour absorption cycles and optimization of the operating parameters[J]. Energy conversion and management, 2019, 180: 1225-1246. DOI: 10.1016/j.enconman.2018.11.062.
[42] XU Z Y, WANG R Z, XIA Z Z.A novel variable effect LiBr-water absorption refrigeration cycle[J]. Energy, 2013, 60: 457-463. DOI: 10.1016/j.energy.2013.08.033.
[43] XU Z Y, WANG R Z, WANG H B.Experimental evaluation of a variable effect LiBr-water absorption chiller designed for high-efficient solar cooling system[J]. International journal of refrigeration, 2015, 59: 135-143. DOI: 10.1016/j.ijrefrig.2015.07.019.
[44] XU Z Y, WANG R Z.Simulation of solar cooling system based on variable effect LiBr-water absorption chiller[J]. Renewable energy, 2017, 113: 907-914. DOI: 10.1016/j.renene.2017.06.069.
[45] LUBIS A, JEONG J, SAITO K, et al.Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates[J]. Renewable energy, 2016, 99: 825-835. DOI: 10.1016/j.renene.2016.07.055.
[46] LUBIS A, JEONG J, GIANNETTI N, et al.Operation performance enhancement of single-double-effect absorption chiller[J]. Applied energy, 2018, 219: 299-311. DOI: 10.1016/j.apenergy.2018.03.046.
[47] WANG R Z, XU Z Y, PAN Q W, et al.Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures[J]. Applied energy, 2016, 169: 846-856. DOI: 10.1016/j.apenergy.2016.02.049.