Welcome to visit Advances in New and Renewable Energy!

Progress of H2O/LiBr Absorption Refrigeration Technology

  • YANG Lei ,
  • LI Hua-shan ,
  • LU Zhen-neng ,
  • CHEN Gao-kai ,
  • LEI Jiong ,
  • MA Wei-bin ,
  • GONG Yu-lie
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. Henan Wanjiang New Energy Group Co., Ltd., Zhengzhou 471700, China

Received date: 2019-10-16

  Online published: 2019-12-31

Abstract

As a widely used absorption refrigeration working pair, H2O/LiBr has excellent thermodynamic properties and environmental friendly characteristics. Nevertheless, it still has problems of crystallization, corrosion and low coefficient of performance (COP). In this paper, the effects of additives such as alcohols, salt mixtures, ionic liquids and nanoparticles on the heat and mass transfer, anti-crystallization and anti-corrosion of H2O/LiBr were summarized. Besides, the theoretical and experimental research status of main components such as absorber and generator were introduced. Research results of the absorption refrigeration cycle optimization were also reviewed. Finally, the existing problems and development trends of lithium bromide absorption refrigeration technology were discussed, which may provide some references for the future study.

Cite this article

YANG Lei , LI Hua-shan , LU Zhen-neng , CHEN Gao-kai , LEI Jiong , MA Wei-bin , GONG Yu-lie . Progress of H2O/LiBr Absorption Refrigeration Technology[J]. Advances in New and Renewable Energy, 2019 , 7(6) : 532 -541 . DOI: 10.3969/j.issn.2095-560X.2019.06.009

References

[1] AMARIS C, VALLÈS M, BOUROUIS M. Vapour absorption enhancement using passive techniques for absorption cooling/ heating technologies: a review[J]. Applied energy, 2018, 231: 826-853. DOI: 10.1016/j.apenergy.2018.09.071.
[2] SUN J, FU L, ZHANG S G.Experimental study on vertical vapor absorption into LiBr solution with and without additive[J]. Applied thermal engineering, 2011, 31(14/15): 2850-2854. DOI: 10.1016/j.applthermaleng.2011.05.010.
[3] ZHANG H, YIN D Z, YOU S J, et al.Experimental investigation of heat and mass transfer in a LiBr-H2O solution falling film absorber on horizontal tubes: comprehensive effects of tube types and surfactants[J]. Applied thermal engineering, 2019, 146: 203-211. DOI: 10.1016/j.applthermaleng.2018.09.127.
[4] ASFAND F, STIRIBA Y, BOUROUIS M.Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems[J]. Energy, 2016, 115: 781-790. DOI: 10.1016/j.energy.2016.08.103.
[5] ZAFARANI-MOATTAR M T, FROUZESH F. The study of vapor-liquid equilibria of 1-ethyl-3-methyl imidazolium chloride and 1-butyl-3-methyl imidazolium chloride in lithium bromide aqueous solutions and their corresponding binary systems at 298.15 K.[J]. Calphad, 2013, 40: 16-23. DOI: 10.1016/j.calphad.2012.11.002.
[6] ZAFARANI-MOATTAR M T, FROUZESH F, RAFIEE H R. The study of volumetric, acoustic and transport properties of ionic liquid, 1-butyl-3-methyl imidazolium chloride [Bmim][Cl] in aqueous lithium bromide solutions at T(298.15-318.15 K)[J]. Fluid phase equilibria, 2014, 376: 40-47. DOI: 10.1016/j.fluid.2014.05.028.
[7] RAFIEE H R, FROUZESH F.Study of apparent molar volumes for ionic liquid, 1-Ethyl-3-methyl imidazolium chloride in aqueous lithium nitrate, lithium bromide, and lithium chloride solutions at temperatures (298.15 to 318.15 K)[J]. Journal of chemical and engineering data, 2015, 60(10): 2958-2965. DOI: 10.1021/acs.jced.5b00329.
[8] RAFIEE H R, FROUZESH F.Vapor-liquid equilibria and volumetric properties for new working fluid ([C6H11N2][HSO4] + LiBr + H2O) and corresponding binary systems at different temperatures and ambient pressure[J]. Fluid phase equilibria, 2016, 429: 137-148. DOI: 10.1016/j.fluid.2016.08.036.
[9] KANG Y T, KIM H J, IL LEE K I. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process[J]. International journal of refrigeration, 2008, 31(5): 850-856. DOI: 10.1016/j. ijrefrig.2007.10.008.
[10] KIM H, JEONG J, KANG Y T.Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids[J]. International journal of refrigeration, 2012, 35(3): 645-651. DOI: 10.1016/j.ijrefrig.2011.11.018.
[11] 解国珍, 李国栋, 法晓明, 等. 纳米颗粒对溴化锂溶液发生温度的影响研究[J]. 制冷与空调, 2008, 8(S1): 80-82. DOI: 10.3969/j.issn.1009-8402.2008.z1.020.
[12] 解国珍, 褚伟鹏, 王刚, 等. 添加纳米粒子的溴化锂溶液传质特性[J]. 制冷学报, 2016, 37(4): 33-38. DOI: 10.3969/j.issn.0253-4339.2016.04.033.
[13] HAM J, KIM J, CHO H.Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution[J]. Applied thermal engineering, 2016, 108: 1020-1032. DOI: 10.1016/j.applthermaleng.2016.07.196.
[14] MORTAZAVI M, ISFAHANI R N, BIGHAM S, et al.Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure[J]. Energy, 2015, 87: 270-278. DOI: 10.1016/j.energy.2015.04.074.
[15] WU J F, YI Z Y, CHEN Y P, et al.Enhanced heat and mass transfer in alternating structure of tubes and longitudinal trough mesh packing in lithium bromide solution absorber[J]. International journal of refrigeration, 2015, 53: 34-41. DOI: 10.1016/j.ijrefrig.2015.01.011.
[16] PALACIOS E, IZQUIERDO M, LIZARTE R, et al.Lithium bromide absorption machines: pressure drop and mass transfer in solutions conical sheets[J]. Energy conversion and management, 2009, 50(7): 1802-1809. DOI: 10.1016/j.enconman.2009.03.023.
[17] GUTIÉRREZ-URUETA G, RODRÍGUEZ P, VENEGAS M, et al. Experimental performances of a LiBr-water absorption facility equipped with adiabatic absorber[J]. International journal of refrigeration, 2011, 34(8): 1749-1759. DOI: 10.1016/j.ijrefrig.2011.07.014.
[18] ISFAHANI R N, MOGHADDAM S.Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures[J]. International journal of heat and mass transfer, 2013, 63: 82-90. DOI: 10.1016/j.ijheatmasstransfer.2013.03.053.
[19] VENEGAS M, DE VEGA M, GARCÍA-HERNANDO N, et al. A simple model to predict the performance of a H2O-LiBr absorber operating with a microporous membrane[J]. Energy, 2016, 96: 383-393. DOI: 10.1016/j.energy.2015.12.059.
[20] VENEGAS M, DE VEGA M, GARCÍA-HERNANDO N. Parametric study of operating and design variables on the performance of a membrane-based absorber[J]. Applied thermal engineering, 2016, 98: 409-419. DOI: 10.1016/j.applthermaleng.2015.12.074.
[21] GARCÍA-HERNANDO N, DE VEGA M, VENEGAS M. Experimental characterisation of a novel adiabatic membrane-based micro-absorber using H2O-LiBr[J]. International journal of heat and mass transfer, 2019, 129: 1136-1143. DOI: 10.1016/j.ijheatmasstransfer.2018.10.046.
[22] LI W, WU X Y, LUO Z, et al.Falling water film evaporation on newly-designed enhanced tube bundles[J]. International journal of heat and mass transfer, 2011, 54(13/14): 2990-2997. DOI: 10.1016/j.ijheatmasstransfer.2011.02.052.
[23] MORTAZAVI M, SCHMID M, MOGHADDAM S.Compact and efficient generator for low grade solar and waste heat driven absorption systems[J]. Applied energy, 2017, 198: 173-179. DOI: 10.1016/j.apenergy.2017.04.054.
[24] HU T L, XIE X Y, JIANG Y.Design and experimental study of a plate-type falling-film generator for a LiBr/H2O absorption heat pump[J]. International journal of refrigeration, 2017, 74: 304-312. DOI: 10.1016/j.ijrefrig.2016.09.024.
[25] HU T L, XIE X Y, JIANG Y.A detachable plate falling film generator and condenser coupling using lithium bromide and water as working fluids[J]. International journal of refrigeration, 2019, 98: 120-128. DOI: 10.1016/j.ijrefrig.2018.10.007.
[26] 闫晓娜, 刘利华, 唐黎明. 套片蛇形管滴淋式发生器性能实验研究[J]. 低温工程, 2019(3): 46-52.
[27] LEE J H, KIM D H, KIM S M, et al.Heat transfer characteristics of a falling film generator for various configurations of heating tubes in an absorption chiller[J]. Applied thermal engineering, 2019, 148: 1407-1415. DOI: 10.1016/j.applthermaleng.2018.08.007.
[28] BIGHAM S, ISFAHANI R N, MOGHADDAM S.Direct molecular diffusion and micro-mixing for rapid dewatering of LiBr solution[J]. Applied thermal engineering, 2014, 64(1/2): 371-375. DOI: 10.1016/j.applthermaleng.2013.12.031.
[29] IBARRA-BAHENA J, DEHESA-CARRASCO U, ROMERO R J, et al.Experimental assessment of a hydrophobic membrane-based desorber/condenser with H2O/LiBr mixture for absorption systems[J]. Experimental thermal and fluid science, 2017, 88: 145-159. DOI: 10.1016/j.expthermflusci.2017.05.024.
[30] IBARRA-BAHENA J, RIVERA W, ROMERO R J, et al.Novel intermittent absorption cooling system based on membrane separation process[J]. Applied thermal engineering, 2018, 136: 718-729. DOI: 10.1016/j.applthermaleng.2018. 03.039.
[31] VENEGAS M, GARCÍA-HERNANDO N, DE VEGA M. A parametric analysis on the effect of design and operating variables in a membrane-based desorber[J]. International journal of refrigeration, 2019, 99: 47-58. DOI: 10.1016/j.ijrefrig.2018.11.043.
[32] GARCÍA-RIVERA E, CASTRO J, FARNÓS J, et al. Numerical and experimental investigation of a vertical LiBr falling film absorber considering wave regimes and in presence of mist flow[J]. International journal of thermal sciences, 2016, 109: 342-361. DOI: 10.1016/j.ijthermalsci. 2016.05.029.
[33] 张治, 操瑞兵, 陈亚平, 等. 叉排管束与M-W引流丝网交替吸收器性能研究[J]. 太阳能学报, 2017, 38(2): 393-399.
[34] CHEN J F, DAI Y J, WANG H B, et al.Experimental investigation on a novel air-cooled single effect LiBr-H2O absorption chiller with adiabatic flash evaporator and adiabatic absorber for residential application[J]. Solar energy, 2018, 159: 579-587. DOI: 10.1016/j.solener.2017.11.029.
[35] CHEN J F, DAI Y J, WANG R Z.Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings[J]. Solar energy, 2017, 151: 110-118. DOI: 10.1016/j.solener.2017.05.029.
[36] LI M, XU C M, HASSANIEN R H E, et al. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system[J]. International journal of refrigeration, 2016, 71: 46-59. DOI: 10.1016/j.ijrefrig.2016.07.023.
[37] GEBRESLASSIE B H, MEDRANO M, BOER D.Exergy analysis of multi-effect water-LiBr absorption systems: from half to triple effect[J]. Renewable energy, 2010, 35(8): 1773-1782. DOI: 10.1016/j.renene.2010.01.009.
[38] SHE X H, YIN Y G, XU M F, et al.A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs[J]. International journal of refrigeration, 2015, 58: 219-234. DOI: 10.1016/j.ijrefrig.2015.06.016.
[39] CHAHARTAGHI M, GOLMOHAMMADI H, SHOJAEI A F.Performance analysis and optimization of new double effect lithium bromide-water absorption chiller with series and parallel flows[J]. International journal of refrigeration, 2019, 97: 73-87. DOI: 10.1016/j.ijrefrig.2018.08.011.
[40] 胡磊, 王晓. 复合式三效溴化锂吸收式制冷循环特性分析[J]. 建筑热能通风空调, 2018, 37(4): 1-5. DOI: 10.3969/j.issn.1003-0344.2018.04.001.
[41] AZHAR, SIDDIQUI M A. Exergy analysis of single to triple effect lithium bromide-water vapour absorption cycles and optimization of the operating parameters[J]. Energy conversion and management, 2019, 180: 1225-1246. DOI: 10.1016/j.enconman.2018.11.062.
[42] XU Z Y, WANG R Z, XIA Z Z.A novel variable effect LiBr-water absorption refrigeration cycle[J]. Energy, 2013, 60: 457-463. DOI: 10.1016/j.energy.2013.08.033.
[43] XU Z Y, WANG R Z, WANG H B.Experimental evaluation of a variable effect LiBr-water absorption chiller designed for high-efficient solar cooling system[J]. International journal of refrigeration, 2015, 59: 135-143. DOI: 10.1016/j.ijrefrig.2015.07.019.
[44] XU Z Y, WANG R Z.Simulation of solar cooling system based on variable effect LiBr-water absorption chiller[J]. Renewable energy, 2017, 113: 907-914. DOI: 10.1016/j.renene.2017.06.069.
[45] LUBIS A, JEONG J, SAITO K, et al.Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates[J]. Renewable energy, 2016, 99: 825-835. DOI: 10.1016/j.renene.2016.07.055.
[46] LUBIS A, JEONG J, GIANNETTI N, et al.Operation performance enhancement of single-double-effect absorption chiller[J]. Applied energy, 2018, 219: 299-311. DOI: 10.1016/j.apenergy.2018.03.046.
[47] WANG R Z, XU Z Y, PAN Q W, et al.Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures[J]. Applied energy, 2016, 169: 846-856. DOI: 10.1016/j.apenergy.2016.02.049.
Outlines

/