Welcome to visit Advances in New and Renewable Energy!

Review on the Pretreatment Method and Mechanism of Lignocellulose

Expand
  • Key Laboratory of Renewable Energy, Chinese Academy of Science, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2013-05-24

  Revised date: 2013-07-12

  Online published: 2013-10-31

Abstract

Due to the huge reserve, wide spread, and renewability, lignocellulose has been chosen as the alternative energy resource for fossil fuels, such as coal, petroleum and nature gas. One important way for the utilization of lignocellulose is fuel ethanol. Cellulose, hemicellulose and lignin are the main components of lignocellulose. Their close association causes physical and chemical barriers for the hydrolysis of cellulose and hemicelluloses into fermentable sugars. Therefore, the pretreatment of lignocellulose is necessary before the hydrolysis process. This paper reviewed and prospected four methods and its reaction mechanism of lignocellulose pretreatment.

Cite this article

QI Wei|WANG Wen|WANG Qiong|YU Qiang|ZHUANG Xin-shu|YUAN Zhen-hong . Review on the Pretreatment Method and Mechanism of Lignocellulose[J]. Advances in New and Renewable Energy, 2013 , 1(2) : 150 -158 . DOI: 10.3969/j.issn.2095-560X.2013.02.005

References

[1] BP 世界能源统计年鉴[M]. 2011.

[2] 袁振宏, 吴创之, 马隆龙, 等. 生物质能利用原理与技术[M]. 北京: 化学工业出版社, 2004.

[3] 日本能源学会编, 史仲平, 华兆哲, 译. 生物质和生物质能源手册[M]. 北京: 化学工业出版社, 2007.

[4] 骆仲泱, 周劲松, 王树荣, 等. 中国生物质能利用技术评价[J]. 中国能源, 2004. 26(9): 39-42.

[5] Demain L A, Newcomb M, Wu H D J. Cellulase, Clostridia, and Ethanol[J]. Microbiol. Mol. Biol. R., 2005, 69(1): 124-154.

[6] Sánchez J Ó, Cardona A C. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresour. Technol., 2008, 99(13): 5270-5295.

[7] Prasad S, Singh A, Joshi H C. Ethanol as an alternative fuel from agricultural, industrial and urban residues[J]. Resour. Conserv. Recy., 2007, 50(1): 1-39.

[8] Malherbe S, Cloete T E. Lignocellulose biodegradation: fundamentals and applications[J]. Reviews in Environmental Science and Bio/technology, 2002, 1(2): 105-114.

[9] The University of Georgia, Complex Carbohydrate Research Centor. http://www.ccrc.uga.edu/~mao/intro/ ouline.htm.

[10] Kumar R, Singh S, Singh O V. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives[J]. J Ind Microbiol Biotechnol, 2008, 35(5): 377-391.

[11] 王镜岩, 朱圣庚, 徐长法. 生物化学第三版上册[M]. 北京:高等教育出版社. 2002, 45-46.

[12] Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant cell walls[J]. Science, 2004, 306(5705): 2206-2211.

[13] Ding S Y, Himmel M E. The maize primary cell wall microfibril: a new model derived from direct visualization[J]. J Agric. Food Chem., 2006, 54(3): 597-606.

[14] Wikimedia Commons. http://upload.wikimedia.org/ wikipedia/commons/c/c3/Cellulose_strand.jpg.

[15] Saha B C. Hemicellulose bioconversion[J]. J. Ind. Microbiol. Biotechnol., 2003, 30(5): 279-291.

[16] The University of Georgia, Complex Carbohydrate Research Centor. http://bioenergy.ccrc.uga.edu/synthesis/ synthesis.htm.

[17] Stewart J J, Akiyama T, Chapple C, et al. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar[J]. Plant Physiol., 2009, 150(2): 621-635.

[18] Vanholme R, Demedts B, Morreel K, et al. Lignin biosynthesis and structure[J]. Plant Physiol, 2010, 153(3): 895-905.

[19] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annu Rev Plant Biol, 2003, 54: 519-546.

[20] Whettena R, Sederoff R. Lignin biosynthesis[J]. The Plant Cell, 1995, 7: 1001-1013.

[21] Vanholme R, Morreel K, Ralph J, et al. Lignin engineering[J]. Curr Opin Plant Biol, 2008, 11(3): 278-285.

[22] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresour Technol, 2010, 101(13): 4851-4861.

[23] Trigo C, Ball A S. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances[J]. Microbiology, 1994, 140(11): 3145-3152.

[24] Antai S P, Crawford D L. Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains[J]. Appl Environ Microbiol, 1981, 42(2): 378-380.

[25] McCarthy A J. Lignocellulose-degrading actinomycetes[J]. FEMS Microbiol Rev, 1987, 46(2): 145-163.

[26] Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities and perspectives[J]. Int J Biol Sci, 2009, 5(6): 578-595.

[27] Gilbert H J. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure[J]. Mol. Microbiol., 2007, 63(6): 1568-1576.

[28] Doi R H, Kosugi A. Cellulosomes: plant-cell-wall- degrading enzyme complexes[J]. Nat. Rev. Microbiol., 2004, 2: 541-551.

[29] Fan L T, Lee Y, Beardmore D H. Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis[J]. Biotechnol. Bioeng, 1980, 22(1): 177-199.

[30] Mais U, Esteghlalian A R, Saddler J N, et al. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling[J]. Appl Biochem Biotechnol, 2002, 98: 815-832.

[31] Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review[J]. Int J Mol Sci, 2008, 9(9): 1621-1651.

[32] Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresour Technol, 2009, 100(1): 10-18.

[33] Karunanithy C, Muthukumarappan K, Julson J L. Influence of high shear bioreactor parameters on carbohydrate release from different biomasses[C]//in American Society of Agricultural and Biological Engineers Annual International Meeting, St. Joseph, Mich, 2008.

[34] Keshwani D R, Cheng J J, Burns J C, et al. Microwave pretreatment of Switchgrass to enhance enzymatic hydrolysis[C]//in ASABE Annual International Meeting, Minneapolis Convention Center, Minneapolis, Minnesota, USA, 2007.

[35] Sridar V. Microwave radiation as a catalyst for chemical reactions[J]. Curr Sci, 1998, 74(5): 446-450.

[36] Lora J H, Wayman M. Delignification of hardwoods by auto-hydrolysis and extraction[J]. Tappi 1978, 61: 47-50.

[37] Azuma T, Tanaka F, Koshijima T. Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation[J]. J Ferm Technol, 1984, 62(4): 337-384.

[38] Zhu S D, Wu Y, Zhao Y, et al. Fed-batch simultaneous saccharification and fermentation of microwave/acid/ alkali/H2O2 pretreated rice straw for production of ethanol[J]. Chem Eng Commun, 2006. 193(5): 639-648.

[39] Karuppuchamy V, Muthukumarappan K. Enzymatic Hydrolysis of Microwave Pretreated Soy hull[C]//in ASABE/CSBE North Central Intersectional Conference, Seattle, WA, 2009.

[40] Yachmenev V, Condon B, Klasson T, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. J Biobased Mater Bio, 2009, 3(1): 25-31.

[41] 赵律, 李志光, 李辉勇, 等. 木质纤维素预处理技术研究进展[J]. 化学与生物工程, 2007, 24(5): 5-8.

[42] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: A review[J]. Bioresour Technol, 2002, 83(1): 1-11.

[43] Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition[J]. Bioresour Technol, 2000, 74(1): 25-33.

[44] McMillan J D. Pretreatment of lignocellulosic biomass[C] //in Symposium on Enzymatic Conversion of Biomass for Fuels Production, at the 205th National Meeting of the American-Chemical-Society, Denver, Co, 1993.

[45] Mussatto S I, Roberto I C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review[J]. Bioresour Technol, 2004, 93(1): 1-10.

[46] Kootstra A M J, Beeftink H H, Scott E L, et al. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw[J]. Biochem Eng J, 2009, 46(2): 126-131.

[47] Silverstein R A, Chen Y, Sharma-Shivappa R R, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J] Bioresour Technol, 2007, 98(16): 3000-3011.

[48] Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production[J]. Process Biochem, 2007, 42(7): 1135-1139.

[49] Dale B E, Moreira M J. Freeze-explosion technique for increasing cellulose hydrolysis[J]. Biotechnol Bioeng Symp, 1982, 12(4): 31-43.

[50] Kim M, Aita G, Day D F. Compositional changes in sugarcane bagasse on low temperature, long-term diluted ammonia treatment[J]. Appl Biochem Biotech, 2010, 161(1-8): 34-40.

[51] Gossett J M, Stuckey D C, Owen W F, et al. Heat treatment and anaerobic digestion of refuse[J]. J Environ Eng Div, 1982, 108(3): 437-454.

[52] Gregg D, Saddler J N. A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process[J]. Appl Biochem Biotechnol, 1996, 57-58(1): 711-727.

[53] Pettersen R C. The chemical composition of wood[J]. Advances in Chemistry Series, 1984, 207: 57-126.

[54] Contreras S. Degradation and biodegradability enhancement of nitrobenzene and 2, 4-dichlorophenol by means of advanced oxidation processes based on ozone[D]. University of Barcelona, 2002.

[55] García-Cubero M T, González-Benito G, Indacoechea I, et al. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw[J]. Bioresour Technol, 2009, 100(4): 1608-1613.

[56] Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Appl. Microbiol. Biotechnol., 2009, 82(5): 815-827.

[57] Zhao X B, Wang L, Liu D H. Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis[J]. J Chem Technol Biotechnol 2007, 82(12): 1115-1121.

[58] Duff S J B, Murray W D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review[J]. Bioresour Technol, 1996, 55(1): 1-33.

[59] Aziz S, Sarkanen K. Organosolv pulping-a review[J]. Tappi J, 1989, 72(3): 169-175.

[60] Pinkert A, Marsh K N, Pang S, et al. Ionic liquids and their interaction with cellulose[J]. Chem Rev, 2009, 109(12): 6712-6728.

[61] Brandt A, Ray M J, To T Q, et al. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures[J]. Green Chem, 2011, 13(9): 2489-2499.

[62] Garrote G, Domínguez H, Parajó J C. Hydrothermal processing of lignocellulosic materials[J]. Holz als Roh- und Werkstoff, 1999, 57(3): 191-202.

[63] Wang K, Jiang J X, Xu F, et al. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya)[J]. Bioresour Technol, 2009, 100(21): 5288-5294.

[64] Ballesteros I, Negro M J, Oliva J M, et al. Ethanol production from steam-explosion pretreated wheat straw[J]. Appl Biochem Biotech, 2006, 129-132: 496-508.

[65] 王鑫. 蒸汽爆破预处理技术及其对纤维乙醇生物转化的研究进展[J]. 林产化学与工业, 2010, 30(4): 119-125.

[66] Avellar B K, Glasser W G. Steam-assisted biomass fractionation. I. Process considerations and economic evaluation[J]. Biomass Bioenerg, 1998, 14(3): 205-218.

[67] Zabihi S, Alinia R, Esmaeilzadeh F, et al. Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production[J]. Biosyst Eng, 2010, 105(3): 288-297.

[68] 廖双泉, 马凤国, 廖建和, 等. 蒸汽爆破处理对剑麻纤维组分分离的影响[J]. 热带作物学报, 2003, 24(3): 27-30.

[69] Bals B, Rogers C, Jin M, et al. Evaluation of ammonia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations[J]. Biotechnol Biofuels, 2010, 3: 1-11.

[70] Wyman C E, Dale B E, Elander R T, et al. Coordinated development of leading biomass pretreatment technologies[J]. Bioresour Technol, 2005, 96(18): 1959-1966.

[71] Holtzapple M T, Jun J H, Ashok G, et al. The ammonia freeze explosion (AFEX) process-A practical lignocellulose pretreatment[J]. Appl Biochem Biotechnol, 1991, 28: 59-74.

[72] Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatic hydrolysis of biomass[J]. Appl Biochem Biotech, 2005, 124(1-3): 1081-1099.

[73] Mosier N, Wyman C E, Dale B D, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresour Technol, 2005, 96(6): 673-686.

[74] Alinia R, Zabihi S, Esmaeilzadeh F, et al. Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production[J]. Biosyst Eng, 2010, 107(1): 61-66.

[75] Schacht C, Zetzl C, Brunner G. From plant materials to ethanol by means of supercritical fluid technology[J]. J Supercrit Fluid, 2008, 46(3): 299-321.

[76] Kim K H, Hong J. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis[J]. Bioresour Technol, 2001, 77(2): 139-144.

[77] Srinivasan N, Ju L K. Pretreatment of guayule biomass using supercritical carbon dioxide-based method[J]. Bioresour Technol, 2010, 101(24): 9785-9791.

[78] Narayanaswamy N, Faik A, Goetz D J, et al. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production[J]. Bioresour Technol, 2011, 102(13): 6995-7000.

[79] Martín C, Klinke H B, Thomsena A B. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse[J]. Enzyme Microb Tech, 2007, 40(3): 426-432.

[80] McGinnis G D, Wilson W W, Mullen C E. Biomass pretreated with water and high-pressure oxygen. The wet-oxidation process[J]. Ind Eng Chem Prod Res Dev, 1983, 22: 352-357.

[81] Varga E, Schmidt A S, Réczey K, et al. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility[J]. Appl Biochem Biotech, 2003, 104(1): 37-50.

Outlines

/