[1] ARMAND M, TARASCON J M.Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a.
[2] ZHANG X, ROSS JR P N, KOSTECKI R, et al. Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles[J]. Journal of the electrochemical society, 2001, 148(5): A463-A470. DOI: 10.1149/1.1362541.
[3] 李伟善. 储能锂离子电池关键材料研究进展[J]. 新能源进展, 2013, 1(1): 95-105. DOI: 10.3969/j.issn.2095- 560X.2013.01.009.
[4] YE C C, TU W Q, YIN L M, et al.Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes[J]. Journal of materials chemistry A, 2018, 6(36): 17642-17652. DOI: 10.1039/C8TA06150E.
[5] CHEN M, PAN Z H, JIN X J, et al.A highly integrated All-manganese battery with oxide nanoparticles supported on the cathode and anode by super-aligned carbon nanotubes[J]. Journal of materials chemistry A, 2019, 7(9): 4494-4504. DOI: 10.1039/C8TA11415C.
[6] CHEN M, CHEN D R, LIAO Y H, et al.Layered lithium-rich oxide nanoparticles doped with spinel phase: acidic sucrose-assistant synthesis and excellent performance as cathode of lithium ion battery[J]. ACS applied materials & interfaces, 2016, 8(7): 4575-4584. DOI: 10.1021/acsami.5b10219.
[7] CHEN Z, WANG C, CHEN M, et al.Highly effective fabrication of two dimensional metal oxides as high performance lithium storage anodes[J]. Journal of materials chemistry A, 2019, 7(8): 3924-3932. DOI: 10.1039/C8TA11555A.
[8] ZHU Y M, LUO X Y, ZHI H Z, et al.Diethyl(thiophen-2-ylmethyl)phosphonate: a novel multifunctional electrolyte additive for high voltage batteries[J]. Journal of materials chemistry A, 2018, 6(23): 10990-11004. DOI: 10.1039/C8TA01236A.
[9] YANG X R, CHEN J W, ZHENG Q F, et al.Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode[J]. Journal of materials chemistry A, 2018, 6(33): 16149-16163. DOI: 10.1039/C8TA03041C.
[10] WANG K, XING L D, ZHU Y M, et al.A comparative study of Si-containing electrolyte additives for lithium ion battery: Which one is better and why is it better[J]. Journal of power sources, 2017, 342: 677-684. DOI: 10.1016/j.jpowsour.2016.12.112.
[11] ZHU Y M, LUO X Y, ZHI H Z, et al.Structural exfoliation of layered cathode under high voltage and its suppression by interface film derived from electrolyte additive[J]. ACS applied materials & interfaces, 2017, 9(13): 12021-12034. DOI: 10.1021/acsami.7b00032.
[12] LI B, WANG Y Q, RONG H B, et al.A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery[J]. Journal of materials chemistry A, 2013, 1(43): 12954-12961. DOI: 10.1039/C3TA13067C.
[13] CHEN X Q, ZHU Y M, LI B, et al.Porous manganese oxide nanocubes enforced by solid electrolyte interphase as anode of high energy density battery[J]. Electrochimica acta, 2017, 224: 251-259. DOI: 10.1016/j.electacta.2016.12.079.
[14] XU J J, HU Y Y, LIU T, et al.Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode[J]. Nano energy, 2014, 5: 67-73. DOI: 10.1016/j.nanoen.2014.02.004.
[15] XU M Q, XIAO A, LI W S, et al.Investigation of Lithium Tetrafluorooxalatophosphate [LiPF4(C2O4)] as a Lithium-Ion battery electrolyte for elevated temperature performance[J]. Journal of the electrochemical society, 2010, 157(1): A115-A120. DOI: 10.1149/1.3258290.
[16] ZHOU L, DALAVI S, XU M Q, et al.Effects of different electrode materials on the performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte[J]. Journal of power sources, 2011, 196(19): 8073-8084. DOI: 10.1016/j.jpowsour.2011.04.061.
[17] HAN J G, PARK I, CHA J, et al.Interfacial architectures derived by lithium Difluoro(bisoxalato) phosphate for lithium-rich cathodes with superior cycling stability and rate capability[J]. ChemElectroChem, 2017, 4(1): 56-65. DOI: 10.1002/celc.201600297.
[18] LIAO B, LI H Y, XU M Q, et al.Designing low impedance interface films simultaneously on anode and cathode for high energy batteries[J]. Advanced energy materials, 2018, 8(22): 1800802. DOI: 10.1002/aenm.201800802.
[19] WANG C Y, YU L, FAN W Z, et al.Lithium difluorophosphate As a promising electrolyte lithium additive for high-voltage lithium-ion batteries[J]. ACS applied energy materials, 2018, 1(6): 2647-2656. DOI: 10.1021/acsaem.8b00342.
[20] KIM K E, JANG J Y, PARK I, et al.A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates[J]. Electrochemistry communications, 2015, 61: 121-124. DOI: 10.1016/j.elecom.2015.10.013.
[21] YANG B W, ZHANG H, YU L, et al.Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica acta, 2016, 221: 107-114. DOI: 10.1016/j.electacta.2016.10.037.
[22] LIU Q Q, MA L, DU C Y, et al.Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells[J] Electrochimica acta, 2018, 263: 237-248. DOI: 10.1016/j.electacta.2018.01.058.
[23] MA L, ELLIS L, GLAZIER S L, et al.LiPO2F2 as an electrolyte additive in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells[J]. Journal of the electrochemical society, 2018, 165(5): A891-A899. DOI: 10.1149/2.0381805jes.
[24] XU Z X, YANG J, QIAN J, et al.Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries[J]. Energy storage materials, 2019, 20: 388-394. DOI: 10.1016/j.ensm.2018.11.001.
[25] CHEN J W, XING L D, YANG X R, et al.Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive[J]. Electrochimica acta, 2018, 290: 568-576. DOI: 10.1016/j.electacta.2018.09.077.
[26] WANG C Y, YU L, FAN W Z, et al.Enhanced high-voltage cyclability of LiNi0.5Co0.2Mn0.3O2-based pouch cells via lithium difluorophosphate introducing as electrolyte additive[J]. Journal of alloys and compounds, 2018, 755: 1-9. DOI: 10.1016/j.jallcom.2018.05.005.
[27] ZHAO W M, ZHENG G R, LIN M, et al.Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes[J]. Journal of power sources, 2018, 380: 149-157. DOI: 10.1016/j.jpowsour.2018.01.041.
[28] YANG G H, SHI J L, SHEN C, et al.Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive[J]. RSC advances, 2017, 7(42): 26052-26059. DOI: 10.1039/C7RA03926C.
[29] QIAN Y X, HU S G, ZOU X S, et al.How electrolyte additives work in Li-ion batteries[J]. Energy storage materials, 2019, 20: 208-215. DOI: 10.1016/j.ensm.2018. 11.015.