0 引言
1 铜基钙钛矿材料的应用
1.1 太阳能电池
Fig. 2 J-V curves (a) and incident photon-to-current efficiency (IPCE) curves (b) for the P1- or P2- based devices[39]; (c) J-V curves of solar cells sensitized with MA2CuCl2Br2 and MA2CuCl0.5Br3.5 under 1 sun of light illumination; (d) photocurrent measurement performed on a device sensitized with MA2CuCl2Br2 (upper) compared to the perovskite absorption spectrum[40]; (e) current-voltage curves and (f) external quantum efficiency (EQE) spectra of the solar cells consisting of (CH3NH3)2CuCl4, (CH3NH3)2CuCl2I2 and (CH3NH3)2CuCl2Br2 perovskites as absorber materials[41]图2 基于P1和P2器件的J-V曲线(a)和入射单色光子-电子转化效率(incident photon-to-current efficiency, IPCE)曲线(b)[39];(c)MA2CuCl2Br2和MA2CuCl0.5Br3.5太阳能电池在 1 个太阳光照下的 J-V 曲线;(d)与钙钛矿吸收光谱相比,在MA2CuCl2Br2(上图)器件上进行的光电流测量[40];(e)电流-电压曲线和(f)由(CH3NH3)2CuCl4、(CH3NH3)2CuCl2I2和 (CH3NH3)2CuCl2Br2组成的太阳能电池的外量子效率(external quantum efficiency, EQE)光谱[41] |
Fig. 4 (a) UV-vis spectra of the pPDACuBr4 film and that after storage in ambient air (relative humidity of 40% - 50%) for 120, 240, 480, and 1 200 h (inset: the image of the pPDACuBr4 film used for the humidity stability test); (b) UV-vis spectra of the pPDACuBr4 film and that after storage under UV light (395 nm) for 72 h, 168 h, 504 h, and 1 008 h (inset: the image of the pPDACuBr4 film under UV light); (c) UV-vis spectra of the pPDACuBr4 film before and after heating at 90°C in ambient air for 180 h; (d) TGA curve of the pPDACuBr4 materials[42]图4 (a)pPDACuBr4薄膜在环境空气中分别储存(相对湿度为40% ~ 50%)120 h、240 h、480 h和1 200 h后的紫外-可见光谱(插图为用于湿度稳定性测试的pPDACuBr4薄膜);(b)pPDACuBr4薄膜在紫外光(395 nm)下分别储存72 h、168 h、504 h和1 008 h后的紫外-可见光谱(插图为在紫外光下拍摄的pPDACuBr4薄膜);(c)pPDACuBr4薄膜在环境空气中90℃加热180 h之前和之后的紫外-可见光谱;(d)pPDACuBr4的热重曲线[42] |
1.2 热致变色
Fig. 5 Color changes of (CH3NH3)2CuClxBr4-x crystals at room temperature (a) and elevated temperature (b) (where the x values in the ① - ⑧ perovskite structures are 4, 3.63, 2.55, 2.20, 1.79, 0.78, 0.31, 0, respectively)[ 46]图5 (CH3NH3)2CuClxbr4-x 晶体分别在室温(a)和高温(b)时的颜色变化(其中 ① ~ ⑧钙钛矿结构中的x值分别为4、3.63、2.55、2.20、1.79、0.78、0.31、0)[46] |
1.3 发光
1.4 光电探测器
Table 1 Performance comparisons of Cs-Cu-I copper-based perovskite photodetector表1 Cs-Cu-I铜基钙钛矿光电探测器性能对比 |
Device structure | Wavelength / nm | Responsivity / (A/W) | Detectivity / (cm·Hz1/2/W) | On/Off ration | Ref. |
---|---|---|---|---|---|
In/GaN/Cs3Cu2I5/Au | 320 | 0.28@0V | 1.4 × 1012 | 120 000 | [63] |
Cs3Cu2I5/Si-core/shell NWs | 265 | 0.13@0V | 3.1 × 1012 | 2 500 | [64] |
ITO/Cs3Cu2I5/ITO | 265 | 0.0649@1V | 6.9 × 1011 | 127 | [65] |
Au/CsCu2I3 nanowires/Au | 325 | 32.2@5V | 1.89 × 1012 | 2 600 | [66] |
Au/CsCu2I3 films/Au | 265 | 22.1@3V | 1.2 × 1011 | 22 | [67] |
Ag/CsCu2I3 single crystal/Ag | 350 | 0.052@3V | 9.3 × 1010 | 188 | [68] |
Fig. 10 Typical I-V curves for two devices under dark and UV illumination (340 nm): (a) Au/Cs-Cu-I (without CuI)/Au. (b) Au/Cs-Cu-I (with CuI)/Au; spectral responsivity (c) and detectivity (d) of Au/Cs-Cu-I (without CuI)/Au and Au/Cs-Cu-I (with CuI)/Au devices under 2 V[69]图10 两种器件分别在黑暗和紫外光(340 nm)下的I-V 曲线:(a)Au/Cs-Cu-I(无CuI)/Au;(b)Au/Cs-Cu-I (含CuI)/Au;Au/Cs-Cu-I (不含 CuI)/Au和Au/Cs-Cu-I (含 CuI)/Au 器件在2 V下的光谱响应度(c)和检测率(d)[69] |