0 引言
1 内短路概率估算模型
Table 1 Parameters of the electrochemical model表1 电化学模型参数 |
材料 | 厚度L / μm | r / mm[13] | ε[13] | as / (m2/m3)[15] | γ / (S/cm) | 反应速率常数活化能Ea,k / (J/mol)[13] | 扩散系数活化能Ea,D / (J/mol)[13] | cs,max / (mol/m3)[15] |
---|---|---|---|---|---|---|---|---|
铜箔 | 9 | / | / | / | 6.0 × 107 | / | / | / |
负极材料 | 59 | 14.75 | 0.30 | 1.06 × 105 | 1.0 | 4 000.0 | 4 000.0 | 28 688.0 |
隔膜 | 20 | / | 0.40 | / | 0.0 | / | / | / |
正极材料 | 92 | 1.15 | 0.28 | 1.30 × 106 | 0.1 | 20 000.0 | 4 000.0 | 20 950.0 |
铝箔 | 16 | / | / | / | 3.8 × 107 | / | / | / |
2 结果与讨论
2.1 离子电导率对发生内短路概率的影响
Fig. 1 On the 4 C charge rate condition, the ISC probability variation with cycle number and ion conductivity: (a) temperature is 10oC; (b) temperature is 25oC图1 充电倍率为4 C时,内短路概率随着循环次数及离子电导率的变化情况:(a)温度为10℃;(b)温度为25℃ |
2.2 必要锂枝晶体积对发生内短路概率的影响
Fig. 2 (a) The ISC probability variation on the condition that VLd is 1.5 times; (b) the variation of ISC probability difference between the 1.5 times and 1 time of VLd图2 (a)必要锂枝晶体积为1.5倍工况下,内短路概率变化情况;(b)必要锂枝晶体积为1.5倍和1倍工况下,内短路概率差的变化情况 |
2.3 锂离子电池安全运行区间
Fig. 3 When the temperature is 25oC, the ISC probability varies with charge rate and cycle number: (a) VLd is 1 time; (b) VLd is 1.5 times图3 温度为25℃时,内短路发生概率随着充电倍率和循环次数的变化:(a)必要锂枝晶体积为1倍工况下;(b)必要锂枝晶体积为1.5倍工况下 |
Fig. 4 When the temperature is 10oC, the ISC probability varies with charge rate and cycle number: (a) VLd is 1 time; (b) VLd is 1.5 times图4 温度为10℃时,内短路发生概率随着充电倍率和循环次数的变化:(a)必要锂枝晶体积为1倍工况下;(b)必要锂枝晶体积为1.5倍工况下 |