Advances in New and Renewable Energy >
Effect of Ag Doping TiO2 on the Phase Transition Temperature Point of VO2 under Ultraviolet Light Irradiation
Received date: 2013-12-20
Revised date: 2014-02-20
Online published: 2014-02-28
The transition metal oxide (TMO) film, VO2, was fabricated on Ag doping titanium oxide substrates by sol-gel method. By the measurement of in-plane resistance varied with temperature under ultraviolet light irradiation, an obvious decrease in the phase transition temperature point was observed for VO2/TiO2 with a silver hierarchical configuration. The reason why the phase transition temperature point shift was discussed base on the voltage measurement under light irradiation that indicated hole-carrier injection from the substrate to the VO2 film. The TMO film could be applied as a photo-thermochromic smart window to enable automatic solar/heat control in response to environmental temperature and solar light.
ZHENG Jin-yu , WU Liang-peng , WANG Xue-wei , ZHOU Feng-ling , XU Gang , LI Xin-jun . Effect of Ag Doping TiO2 on the Phase Transition Temperature Point of VO2 under Ultraviolet Light Irradiation[J]. Advances in New and Renewable Energy, 2014 , 2(1) : 59 -62 . DOI: 10.3969/j.issn.2095-560X.2014.01.010
[1] Morin F J. Oxide which show a metal to insulator transition at the neel temperature[J]. Physical Review Letters, 1953, 9: 34-36.
[2] Chen S H, Ma H, Dai J, et al. Nanostructured vanadium dioxide thin films with low phase transition temperature[J]. Applied Physics Letters, 2007, 90(10): 101117.
[3] Ganqvist C G, Avendano E, Azens A. Electrochromic coatings and devices: Survey of some recent advances[J]. Thin Solid Films, 2003, 442: 201-211.
[4] Yan J Z, Zhang Y, Huang W X, et al. Effect of Mo-W Co-doping on semiconductor-metal phase transition temperature of vanadium dioxide film[J]. Thin Solid Films, 2008, 516: 8554-8558.
[5] Xu G, Jin P, Tazawa M, et al. Tailoring of Luminous Transmittance upon Switching for Thermochromic VO2 Films by Thickness Control[J]. Japanese Journal of Applied Physics, 2004, 1: 186-187.
[6] Kivaisi R T, Samiji M. Optical and electrical properties of vanadium dioxide films prepared under optimized RF sputtering conditions[J]. Solar Energy Materials and Solar Cells, 1999, 57: 141-152.
[7] Mun B S, Chen K, Yoon J, et al. Nonpercolative metal-insulator transition in VO2 single crystals[J]. Physical Review B, 2011, 84: 113109.
[8] Lysenko S, Vikhnin V, Fernandez F, et al. Photoinduced insulator-to-metal phase transition in VO2 crystalline films and model of dielectric susceptibility[J]. Physical Review B, 2007, 75: 075109.
[9] Nagashima K, Yanagida T, Tanaka H, et al. Interface effect on metal-insulator transition of strained vanadium dioxide ultrathin films[J]. Journal of Applied Physical, 2007, 101: 026103.
[10] Rúa A, Fernández F E, Sepúlveda N. Bending in VO2-coated microcantilevers suitable for thermally activated actuators[J]. Journal of Applied Physical, 2010, 107: 074506.
[11] Brassard D, Fourmaux S, Jean-Jacques, et al. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO thin films[J]. Applied Physical Letters, 2005, 87: 051910.
[12] Narayan J, Bhosle V M. Phase transition and critical issues in structure-property correlations of vanadium oxide[J]. Journal of Applied Physical, 2006, 100, 103524.
[13] Li Y M, Ji S D, Gao Y F, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings[J]. Scientific Reports, 2013, 3: 1370.
[14] Li Y M, Ji S D, Gao Y F, et al. Modification of Mott Phase Transition Characteristics in VO2@TiO2 Core/Shell Nanostructures by Misfit-Strained Heteroepitaxy[J]. ACS Applied Materials&Interfaces, 2013, 5: 6603-6614.
[15] Kakiuchida H, Jin P, Tazawa M. Optical characterization of vanadium-titanium oxide films[J]. Thin Solid Films, 2008, 516: 4563-4567.
[16] Guzman G, Beteille F, Morineau R, et al. Electrical switching in VO2 Sol-Gel films [J]. Journal of Materials Chemistry, 1996, 6: 505-506.
[17] Katsu H, Tanaka H, Kawai T. Photo-carrier injection effect on double exchange ferromagnetism in (La, Sr)MnO3/SrTiO3 Heterostructure[J]. Applied Physical Letters, 2000, 76: 3245-3247.
[18] Hiror Z J, Yamauchi T, Muraoka Y J, et al. E?ciency of Photocarrier Injection in a VO2/TiO2:Nb Heterostructure[J]. Journal of the Physical Society of Japan, 2003, 12: 3049-3052.
[19] Muramatsu T, Muraoka Y, Yamauchi T, et al. Efficient photocarrier injection to transition metal oxides[J]. Journal of Magnetism and Magnetic Materials, 2004, 272-276: 448-449.
[20] Yang Y, Li X J, Chen J W, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163: 517-522.
[21] Zheng J Y, Yu H, Li X J, et al. Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration[J]. Applied Surface Science, 2008, 254(6): 1630-1635.
[22] Pellegrino L, Manca N, Kanki T, et al. Multistate Memory Devices Based on Free-standing VO2/TiO2 Microstructures Driven by Joule Self-Heating, Advanced Materials, 2012, 24: 2929-2934.
/
〈 |
|
〉 |