Advances in New and Renewable Energy >
Catalytic Depolymerization and Hydrogenolysis of Lignin
Received date: 2014-02-08
Revised date: 2014-04-14
Online published: 2014-04-30
Lignin is the unique, renewable and natural aromatic polymer. The efficient transformation of lignin into phenolic monomers and other high value-added chemicals such as hydrocarbons has long been regarded as an important comprehensive utilization approach. In this paper, we focused on the basic structure and the main treatment technologies of this aromatic material. The recent progress in the catalytic thermal depolymerization and hydrogenolysis were reviewed intensively. The catalytic mechanism for the degradation of lignin characteristic chemical bond β-O-4 was also given. Furthermore, the current technique challenges were summarized. Moreover, future technologic explorations for the efficient application of lignin were proposed.
Key words: lignin; depolymerization; hydrogenolysis; phenolic monomer; hydrocarbon
LONG Jin-xing , XU Ying , WANG Tie-jun , ZHANG Xing-hua , ZHANG Qi , MA Long-long , LI Yu-ping . Catalytic Depolymerization and Hydrogenolysis of Lignin[J]. Advances in New and Renewable Energy, 2014 , 2(2) : 83 -88 . DOI: 10.3969/j.issn.2095-560X.2014.02.001
[1] 马隆龙, 王铁军, 吴创之, 等. 木质纤维素化工技术及应用[M]. 北京: 科学出版社, 2010.
[2] 蒋挺大. 木质素[M]. 第二版. 北京: 化学工业出版社, 2008.
[3] Klein A P, Beach E S, Emerson J W, et al. Accelerated Solvent Extraction of Lignin from Aleurites moluccana (Candlenut) Nutshells[J]. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10045-10048.
[4] 路瑶, 魏贤勇, 宗志敏, 等. 木质素结构研究及应用[J]. 化学进展, 2013, 25(5): 838-858.
[5] Heitner C, Dimmel D, Schmidt J. Lignin and Lignans: Advances in Chemistry[M]. In CRC Press: 2010.
[6] Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals[J]. Chemical Reviews, 2010, 110(6): 3552-3599.
[7] Yaghoubi K, Pazouki M, Shojaosadati S A. Variable optimization for biopulping of agricultural residues by Ceriporiopsis subvermispora[J]. Bioresource Technology, 2008, 99(10): 4321-4328.
[8] Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemical conversion of biomass: a review[J]. Bioresource Technology, 2001, 79(3): 277-299.
[9] Nowakowski D J, Bridgwater A V, Elliott D C, et al. Lignin fast pyrolysis: Results from an international collaboration[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(1): 53-72.
[10] 谭洪, 王树荣, 骆仲泱, 等. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5): 710-714.
[11] 岳金方, 应浩. 工业木质素的热裂解试验研究[J]. 农业工程学报, 2006, 22(S1): 125-128.
[12] 武书彬, 向冰莲, 刘江燕, 等. 工业碱木素热裂解特性研究[J]. 北京林业大学学报, 2008, 30(5): 143-147.
[13] 江蓉. 木质素高效率醇化的工艺条件研究[J]. 黄山学院学报, 2008,10(5): 44-47.
[14] Shevchenko S M. Depolymerization of lignin in wood with molecular hydrogen iodide[J]. Croatica Chemica Acta, 2000, 73(3): 831-841.
[15] Jia S, Cox B J, Guo X, et al. Cleaving the beta-O-4 Bonds of Lignin Model Compounds in an Acidic Ionic Liquid, 1-H-3-Methylimidazolium Chloride: An Optional Strategy for the Degradation of Lignin[J]. Chemsuschem, 2010, 3(9): 1078-1084.
[16] Cox B J, Ekerdt J G. Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst[J]. Bioresource Technology, 2012, 118: 584-588.
[17] Long J, Li X, Guo B, et al. Catalytic delignification of sugarcane bagasse in the presence of acidic ionic liquids[J]. Catalysis Today, 2013, 200: 99-105.
[18] Thring R W. Alkaline-Degradation of Alcell(R) Lignin[J]. Biomass & Bioenergy, 1994, 7(1-6): 125-130.
[19] Miller J E, Evans L, Littlewolf A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J]. Fuel, 1999, 78: 1363-1366.
[20] Toledano A, Serrano L, Labidi J. Organosolv lignin depolymerization with different base catalysts[J]. Journal of Chemical Technology and Biotechnology, 2012, 87(11): 1593-1599.
[21] Shabtai J S, Zmierczak W W, Chornet E, et al. Conversion of biomass into blending component for petroleum-derived fuel by depolymerizing lignin feed material in aqueous solvent to provide first composition, and hydroprocessing first composition to provide second composition[P]. USA, US2003115792-A1. 2003-06-26.
[22] Shabtai J S, Zmierczak W W, Chornet E, et al. Conversion of biomass into blending component for petroleum-derived fuel, comprises extracting lignin- containing fraction in reaction medium from biomass to provide lignin feed material[P]. USA, US2003100807- A1. 2003-05-29.
[23] Lavoie J M, Bare W, Bilodeau M. Depolymerization of steam-treated lignin for the production of green chemicals[J]. Bioresource Technology, 2011, 102(7): 4917-4920.
[24] Gosselink R J A, Teunissen W, van Dam J E G, et al. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals[J]. Bioresource Technology, 2012, 106: 173-177.
[25] Yuan Z S, Cheng S N, Leitch M, et al. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol[J]. Bioresource Technology, 2010, 101(23): 9308-9313.
[26] Long J X, Zhang Q, Wang T J, et al. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran [J]. Bioresource Technology, 2014, 154: 10-17.
[27] Kleinert M, Barth T. Towards a lignincellulosic biorefinery: Direct one-step conversion of lignin to hydrogen-enriched biofuel[J]. Energy & Fuels, 2008, 22(2): 1371-1379.
[28] Roberts V M, Stein V, Reiner T, et al. Towards Quantitative Catalytic Lignin Depolymerization[J]. Chemistry-A: European Journal, 2011, 17(21): 5939- 5948.
[29] Nenkova S, Vasileva T, Stanulov K. Production of phenol compounds by alkaline treatment of technical hydrolysis lignin and wood biomass[J]. Chemistry of Natural Compounds, 2008, 44(2): 182-185.
[30] Nagy M, David K, Britovsek G J P, et al. Catalytic hydrogenolysis of ethanol organosolv lignin[J]. Holzforschung, 2009, 63(5): 513-520.
[31] Harris E E, D'Ianni J, Adkins H. Reaction of hardwood lignin with hydrogen[J]. Journal of the American Chemical Society, 1938, 60: 1467-1470.
[32] David W. Goheen. Hydrogenation of Lignin by the Noguchi Process. Lignin Structure and Reactions [M]. Chapter 14: 205-225.
[33] Zhao C, Lercher J A. Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSM-5 Catalysts[J]. Chemcatchem, 2012, 4(1): 64-68.
[34] Zhao C, Kou Y, Lemonidou A A, et al. Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes[J]. Angewandte Chemie-International Edition, 2009, 48(22): 3987-3990.
[35] Zhao C, Kou Y, Lemonidou A A, et al. Hydrodeoxy- genation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts[J]. Chemical Communications, 2010, 46(3): 412-414.
[36] Zhao C, He J Y, Lemonidou A A, et al. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. Journal of Catalysis, 2011, 280(1): 8-16.
[37] Yan N, Yuan Y A, Dykeman R, et al. Hydrodeoxygenation of Lignin-Derived Phenols into Alkanes by Using Nanoparticle Catalysts Combined with Bronsted Acidic Ionic Liquids[J]. Angewandte Chemie-International Edition, 2010, 49(32): 5549-5553.
[38] Pepper J M, Lee Y W. Lignin and related compounds. I. A comparative study of catalysts for lignin hydrogenolysis[J]. Canadian Journal of Chemistry, 1969, 47(5): 723-727.
[39] Pepper J M, Supathna P. Lignin and related compounds. VI. A study of variables affecting the hydrogenolysis of spruce wood lignin using a rhodium-on-charcoal catalyst[J]. Canadian Journal of Chemistry, 1978, 56(7): 899-902.
[40] Xu W, Miller S J, Agrawal P K, et al. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid[J]. Chemsuschem, 2012, 5(4): 667-675.
[41] Liguori L, Barth T. Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 477-484.
[42] Macala G S, Matson T D, Johnson C L, et al. Hydrogen Transfer from Supercritical Methanol over a Solid Base Catalyst: A Model for Lignin Depolymerization[J]. Chemsuschem, 2009, 2(3): 215-217.
[43] Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chemistry, 2010, 12(9): 1640-1647.
[44] Wang W, Yang Y, Bao J, et al. Characterization and catalytic properties of Ni-Mo-B amorphous catalysts for phenol hydrodeoxygenation[J]. Catalysis Communications, 2009, 11: 100-105.
[45] Wang W, Yang Y, Luo H, et al. Effect of additive (Co, La) for Ni-Mo-B amorphous catalysts and its hydrodeoxygenation properties[J]. Catalysis Communi- cations, 2010, 11: 803-807.
[46] Zhang X, Wang T, Ma L, et al. Hydrotreatment of bio-oil over Ni-based catalyst[J]. Bioresource Technology, 2013, 127: 306-311.
[47] Zhang X, Wang T, Ma L, et al. Aqueous-phase catalytic processes of furfural for production of pentane over nickel-based catalysts[J]. Fuel, 2010, 89(10): 2697-2702.
[48] Zhang X, Zhang Q, Wang T, et al. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts[J]. Bioresource Technology. 2013, 134: 73-80.
[49] Song Q, Wang F, Cai J, et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6: 994-1007.
[50] Yakovlev V A, Khromova S A, Sherstyuk O V, et al. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel[J]. Catalysis Today, 2009, 144: 362-266.
[51] Jia S Y, Cox B J, Guo X W, et al. Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides[J]. Industrial & Engineering Chemistry Research, 2011, 50: 849-855.
[52] Shimizu S, Yokoyama T, Akiyama T, et al. reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 6471-6476.
/
〈 |
|
〉 |