Welcome to visit Advances in New and Renewable Energy!

Development of Catalysts for Biofuels Production from Biomass via Fischer-Tropsch Synthesis

  • TU Jun-ling ,
  • DING Ming-yue ,
  • LI Yu-ping ,
  • WANG Tie-jun ,
  • MA Long-long ,
  • LI Xin-jun
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2013-12-09

  Revised date: 2014-04-16

  Online published: 2014-04-30

Abstract

 Fischer-Tropsch Synthesis (FTS) is an important route to produce various high quality hydrocarbon fuels or chemicals for different applications from synthesis gas (CO + H2), which can be derived from nonpetroleum feedstocks such as natural gas, coal, or biomass. FTS processes from biomass derived syngas using the traditionally Fe, Co catalysts have received a great deal of interest in recent years. In this perspective, the latest developments in the preparation of high performance FTS catalysts are presented, including an overview of mesoporous materials and core–shell materials for FTS. The application of high performance FTS catalysts are highlighted for hydrocarbon production from biomass, including a comparative overview of the Fe- and Co-based catalysts performance. The productivity of cobalt-based catalysts at high conversion level is currently higher than that of iron-based catalysts. Nevertheless, it is argued that iron-based catalysts may be an attractive option for the Biomass-To-Liquid (BTL)-process. Development of more efficient, cheaper and tailored Fe-based catalysts is promising.

Cite this article

TU Jun-ling , DING Ming-yue , LI Yu-ping , WANG Tie-jun , MA Long-long , LI Xin-jun . Development of Catalysts for Biofuels Production from Biomass via Fischer-Tropsch Synthesis[J]. Advances in New and Renewable Energy, 2014 , 2(2) : 94 -103 . DOI: 10.3969/j.issn.2095-560X.2014.02.003

References

[1] Fischer F, Tropsch H. Concerning the synthesis of upper links in the aliphatic sequence from carbon oxide[J]. Ber Dtsch Chem Ges, 1923, 56: 2428-2443.

[2] Fischer F, Tropsch H. On some characteristics of the sythetic crude oil carbon hydrogen from carbon oxyde under usual pressure[J]. Ber Dtsch Chem Ges, 1926, 59: 923-925.

[3] Choudhary T V, Choudhary V R. Energy-efficient syngas production through, catalytic oxy-methane reforming reactions[J]. Angewandte Chemie-International Edition, 2008, 47(10): 1828-1847.

[4] Matsumura Y, Minowa T, Potic B, et al. Biomass gasification in near- and super-critical water: Status and prospects[J]. Biomass Bioenerg, 2005, 29(4): 269-292.

[5] Eilers J, Posthuma S A, Sie S T. The Shell Middle Distillate Synthesis Process (Smds)[J]. Catalysis Letters, 1991, 7(1-4): 253-269.

[6] Knottenbelt C, Mossgas “gas-to-liquid” diesel fuels–an environmentally friendly option[J]. Catalysis Today, 2002, 71(3-4), 437-445.

[7] Vannice M A. Catalytic Synthesis of Hydrocarbons from H2-CO Mixtures over Group-8 Metals: I. Specific Activities and Product Distributions of Supported Metals[J]. Journal of Catalysis, 1975, 3(3): 449-461.

[8] Boerrigter H, Rauch R. Syngas production and utilisation, in: Knoef, H. A.. M.(Ed.), Handbook Biomass Gasification, BTG biomass technology group[M]. The Netherlands, 2005, 211-230.

[9] Yung M M, Jablonski W S, Magrini-Bair K A. Review of Catalytic Conditioning of Biomass-Derived Syngas[J]. Energy Fuels, 2009, 23: 1874-1887.

[10] Bartholomew C H. Recent technological developments in Fischer-Tropsch catalysis[J]. Catalysis Letters, 1990, 7(1-4): 303-315.

[11] Steynberg A P, Espinoza R L, Jager B, et al. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Applied Catalysis a-General, 1999, 186(1-2): 41-54.

[12] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.

[13] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie- International Edition, 2008, 47(20): 3696-3717.

[14] Pan X L, Bao X H. Reactions over catalysts confined in carbon nanotubes[J]. Chemical Communications, 2008, (47): 6271-6281.

[15] Stein A, Wang Z Y, Fierke M A. Functionalization of Porous Carbon Materials with Designed Pore Architecture[J]. Advanced Materials, 2009, 21(3): 265-293.

[16] Serp P, Castillejos E. Catalysis in Carbon Nanotubes[J]. Chemcatchem, 2010, 2(1): 41-47.

[17] Wang D, Yang G H, Ma Q X, et al. Confinement Effect of Carbon Nanotubes: Copper Nanoparticles Filled Carbon Nanotubes for Hydrogenation of Methyl Acetate[J]. Acs Catalysis, 2012, 2(9): 1958-1966.

[18] Xie W, Zhang Y H, Liew K Y, et al. Effect of catalyst confinement and pore size on Fischer-Tropsch synthesis over cobalt supported on carbon nanotubes[J]. Science China Chemistry, 2012, 55(9): 1811-1818.

[19] Yu L, Li W X, Pan X L, et al. In- and Out-Dependent Interactions of Iron with Carbon Nanotubes[J]. Journal of Physical Chemistry C, 2012, 116(31): 16461-16466.

[20] Pan X L, Bao X H. The Effects of Confinement inside Carbon Nanotubes on Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 553-562.

[21] Chen W, Pan X L, Bao X H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426.

[22] Chen W, Fan Z L, Pan X L, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419.

[23] Chen W, Pan X L, Willinger M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137.

[24] Yang Z Q, Pan X L, Wang J H, et al. FeN particles confined inside CNT for light olefin synthesis from syngas: Effects of Mn and K additives[J]. Catalysis Today, 2012, 186(1): 121-127.

[25] Abbaslou R M M, Tavassoli A, Soltan J, et al. Iron catalysts supported on carbon nanotubes for Fischer- Tropsch synthesis: Effect of catalytic site position[J]. Applied Catalysis a-General, 2009, 367(1-2): 47-52.

[26] Sun Z K, Sun B, Qiao M H, et al. A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles- Incorporated Ordered Mesoporous Carbon Catalysts for Fischer-Tropsch Synthesis[J]. Journal of the American Chemical Society, 2012, 134(42): 17653-17660.

[27] Davis B H. Fischer-Tropsch Synthesis: Reaction mechanisms for iron catalysts[J]. Catalysis Today, 2009, 141: 25-33.

[28] Visconti C G, Tronconi E, Lietti L, et al. Detailed Kinetics of the Fischer-Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation[J]. Topics in Catalysis, 2011, 54: 786-800.

[29] Gracia J, Prinsloo F, Niemantsverdriet J. Mars-van Krevelen-like Mechanism of CO Hydrogenationon an Iron Carbide Surface[J]. Catalysis Letters, 2009, 133: 257-261.

[30] Eliason S A, Bartholomew C H. in Catalyst Deactivation, ed. C. H. Bartholomew and J. B. Butt[M]. Elsevier, Amsterdam, 1991. 211.

[31] Nakhaei Pour A, Reza Housaindokht M, Zarkesh J, et al. Studies of carbonaceous species in alkali promoted iron catalysts during Fischer-Tropsch synthesis[J]. Journal of Industrial and Engineering Chemistry, 2010, 16: 1025-1032.

[32] Yang Y, Xiang H W, Xu Y Y, et al. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis a-General, 2004, 266(2): 181-194.

[33] Liu F X, Hao Q L, Wang H, et al. Effect of potassium promoter on reaction performance of iron-based catalyst for Fischer-Tropsch synthesis in slurry reactor[J]. Chinese Journal of Catalysis, 2004, 25(11): 878-886.

[34] Ngantsoue-Hoc W, Zhang Y Q, O’Brien R J, et al. Fischer-Tropsch synthesis: activity and selectivity for Group I alkali promoted iron-based catalysts[J]. Applied Catalysis a-General, 2002, 236(1-2): 77-89.

[35] Lohitharn N, Goodwin J G. Effect of K promotion of Fe and FeMn Fischer-Tropsch synthesis catalysts: Analysis at the site level using SSITKA[J]. Journal of Catalysis, 2008, 260(1): 7-16.

[36] Zhang C H, Yang Y, Teng B T, et al. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. Journal of Catalysis, 2006, 237(2): 405-415.

[37] Lohitharn N, Goodwin J G, Lotero E. Fe-based Fischer- Tropsch synthesis catalysts containing carbide-forming transition metal promoters[J]. Journal of Catalysis, 2008, 255(1): 104-113.

[38] Lohitharn N, Goodwin J G. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: Investigation at the active site level using SSITKA[J]. Journal of Catalysis, 2008, 257(1): 142-151.

[39] Campos A, Lohitharn N, Roy A, et al. An activity and XANES study of Mn-promoted, Fe-based Fischer- Tropsch catalysts[J]. Applied Catalysis a-General, 2010, 375(1): 12-16.

[40] Luo M S, Davis B H. Fischer-Tropsch synthesis: Group II alkali-earth metal promoted catalysts[J]. Applied Catalysis a-General, 2003, 246(1): 171-181.

[41] Gallegos N G, Alvarez A M, Cagnoli M V, et al. Selectivity to olefins of Fe/SiO2-MgO catalysts in the Fischer-Tropsch reaction[J]. Journal of Catalysis, 1996, 161(1): 132-142.

[42] Yang J, Sun Y C, Tang Y, et al. Effect of magnesium promoter on iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis a-Chemical, 2006, 245(1-2): 26-36.

[43] Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Review, 2007, 107(5): 1692-1744.

[44] Soled S L, Iglesia E, Fiato R A, et al. Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts[J]. Topics in Catalysis, 2003, 26(1-4): 101-109.

[45] Davis B H. Fischer-Tropsch synthesis: Overview of reactor development and future potentialities[J]. Topics in Catalysis, 2005, 32(3-4): 143-168.

[46] Kitakami O, Sato H, Shimada Y, et al. Size effect on the crystal phase of cobalt fine particles[J]. Physical Review B, 1997, 56 (21): 13849-13854.

[47] Karaca H, Hong J P, Fongarland P, et al. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer- Tropsch synthesis[J]. Chemical Communications, 2010, 46(5): 788-790.

[48] Bezemer G L, Bitter J H, Kuipers H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964.

[49] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Applied Catalysis a-General, 1997, 161(1-2): 59-78.

[50] den Breejen J P, Radstake P B, Bezemer G L, et al. On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis[J]. Journal of the American Chemical Society, 2009, 131(20): 7197-7203.

[51] Borg O, Dietzel P D C, Spjelkavik A I, et al., Fischer- Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution[J]. Journal of Catalysis, 2008, 259(2): 161-164.

[52] Storsaeter S, Totdal B, Walmsley J C, et al. Characterization of alumina-, silica-, and titania-supported cobalt Fischer- Tropsch catalysts[J]. Journal of Catalysis, 2005, 236 (1): 139-152.

[53] Bartholomew C H, Reuel R C. Cobalt Support Interactions–Their Effects on Adsorption and Co Hydrogenation Activity and Selectivity Properties[J]. Ind Eng Chem Prod Rd, 1985, 24(1): 56-61.

[54] Tsubaki N, Sun S L, Fujimoto K. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2001, 199(2): 236-246.

[55] Chu W, Chernavskii P A, Gengembre L, et al. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2007, 252(2): 215-230.

[56] Moradi G R, Basir M M, Taeb A, et al. Promotion of CO/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catalysis Communications, 2003, 4(1): 27-32.

[57] Jongsomjit B, Panpranot J, Goodwin J G. Effect of zirconia-modified alumina on the properties of Co/gamma-Al2O3 catalysts[J]. Journal of Catalysis, 2003, 215(1): 66-77.

[58] Xiong H F, Zhang Y H, Liew K, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis a-Chemical, 2005, 231(1-2): 145-151.

[59] Morales F, de Smit E, de Groot F M F, et al. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2007, 246(1): 91-99.

[60] Feltes T E, Espinosa-Alonso L, de Smit E, et al. Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2010, 270(1): 95-102.

[61] Ryan K M, Coleman N R B, Lyons D M, et al. Control of pore morphology in mesoporous silicas synthesized from triblock copolymer templates[J]. Langmuir, 2002, 18(12): 4996-5001.

[62] Sun J M, Bao X H. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts[J]. Chemistry–A European Journal, 2008, 14(25): 7478- 7488.

[63] Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. Journal of Catalysis, 2002, 206(2): 230-241.

[64] Tang Q H, Wang P, Zhang Q H, et al. Utilization of microporous and mesoporous materials as supports of cobalt catalysts for regulating product distributions in Fischer-Tropsch synthesis[J]. Chemistry Letters, 2006, 35(4): 366-367.

[65] Martinez A, Lopez C, Marquez F, et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters[J]. Journal of Catalysis, 2003, 220(2): 486-499.

[66] Xiong H, Zhang Y, Liew K, et al. Fischer-Tropsch synthesis: The role of pore size for Co/SBA-15 catalysts[J]. Journal of Molecular Catalysis a-Chemical, 2008, 295(1-2): 68-76.

[67] Liu Y C, Fang K G, Chen J G, et al. Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts[J]. Green Chemistry, 2007, 9(6): 611-615.

[68] Sun B, Qiao M H, Fan K N A, et al. Fischer-Tropsch Synthesis over Molecular Sieve Supported Catalysts[J]. Chemcatchem, 2011, 3(3): 542-550.

[69] Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angewandte Chemie-International Edition, 2008, 47(2): 353-356.

[70] He J J, Yoneyama Y, Xu B L, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins[J]. Langmuir, 2005, 21(5): 1699-1702.

[71] Li C L, Xu H Y, Kido Y, et al. A Capsule Catalyst with a Zeolite Membrane Prepared by Direct Liquid Membrane Crystallization[J]. Chemsuschem, 2012, 5(5): 862-866.

[72] Bao J, Yang G H, Okada C, et al. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas[J]. Applied Catalysis a-General, 2011, 394(1-2): 195-200.

[73] Yang G H, Wang D, Yoneyama Y, et al. Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis[J]. Chemical Communications, 2012, 48(9): 1263-1265.

[74] Yu G B, Sun B, Pei Y, et al. FexOy@C Spheres as an Excellent Catalyst for Fischer-Tropsch Synthesis[J]. Journal of the American Chemical Society, 2010, 132(3): 935-937.

[75] Li Y X, Yao L H, Song Y Y, et al. Core-shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition[J]. Chemical Communications, 2010, 46(29): 5298-5300.

[76] Calderone V R, Shiju N R, Ferre D C, et al. De Novo Design of Nanostructured Iron-Cobalt Fischer-Tropsch Catalysts[J]. Angewandte Chemie-International Edition, 2013, 52(1): 1-6.

[77] Leckel D. Diesel Production from Fischer-Tropsch: The Past, the Present, and New Concepts[J]. Energy Fuels, 2009, 23(5): 2342-2358.

[78] Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass–A technology review from 1950 to 2009[J]. Fuel, 2010, 89(8): 1763-1783.

[79] Fermoso J, Arias B, Gil M V, et al. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production[J]. Bioresource Technol 2010, 101(9), 3230-3235.

[80] Smoliński A, Howaniec N, Stańczyk K. A comparative experimental study of biomass, lignite and hard coal steam gasification[J]. Renewable Energy, 2011, 36(6): 1836-1842.

[81] Kim Y S, Lee J J, Kim T S, et al. Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle[J]. Energy Conversion and Management, 2011, 52(5): 2262-2271.

[82] van Steen E, Claeys M. Fischer-Tropsch Catalysts for the Biomass-to-Liquid (BTL)-Process[J]. Chemical engineering & technology, 2008, 31(5): 655-666.

[83] Escalona N, Medina C, Garcia R, et al. Fischer Tropsch reaction from a mixture similar to biosyngas. Influence of promoters on surface and catalytic properties of Co/SiO2 catalysts[J]. Catalysis Today, 2009, 143(1): 76-79.

[84] Jun K W, Roh H S, Kim K S, et al. Catalytic investigation for Fischer-Tropsch synthesis from bio-mass derived syngas[J]. Applied Catalysis A: General, 2004, 259(2): 221-226.

[85] Dutta A, Acharya B. Production of bio-syngas and biohydrogen via gasi?cation[A]. ed. Luque R., Campelo J. M. and Clark J. H., Handbook of Biofuels Production: Processes and Technologies[M], Cambridge, UK, Woodhead Publishing Ltd., 2010, ch. 16: 420-457.

[86] Lappas A, Heracleous E. Production of biofuels via hydrothermal conversion[A]. ed. Luque R., Campelo J. M. and Clark J. H., Handbook of Biofuels Production: Processes and Technologies[M], Cambridge, UK, Woodhead Publishing Ltd., 2010, ch. 18: 478-489.

[87] Meng X, De Jong W, Pal R, et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review[J]. Fuel Processing Technology, 2010, 91(8): 964-981.

[88] Pansare SS, Allison JD. An investigation of the effect of ultra-low concentrations of sulfur on a Co/gamma-Al2O3 Fischer-Tropsch synthesis catalyst[J]. Applied Catalysis A: General, 2010, 387: 224-230.

[89] Kritzinger J A. The role of sulfur in commercial iron-based Fischer-Tropsch catalysis with focus on C2-product selectivity and yield[J]. Catalysis today, 2002, 71(3): 307-318.

[90] Robota HJ, Alger J, Pretorius PJ. Impact of low levels of ammonia in syngas on the Fischer-Tropsch synthesis performance of cobalt and iron catalysts in fixedbed operation[C]. National Spring Meeting of the American Institute of Chemical Engineers. Houston, TX: American Institute of Chemical Engineers; 2012.

[91] Dalai A K, Davis B H. Fischer-Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts[J]. Applied Catalysis A: General, 2008, 348(1): 1-15.

[92] Yao Y, Hildebrandt D, Glasser D, et al. Fischer-Tropsch Synthesis Using H2/CO/CO2 Syngas Mixtures over a Cobalt Catalyst[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 11061-11066.

[93] Riedel T, Claeys M, Schulz H, et al. Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe-and Co-based catalysts[J]. Applied Catalysis A: General, 1999, 186(1): 201-213.

 
Outlines

/