[1] Fischer F, Tropsch H. Concerning the synthesis of upper links in the aliphatic sequence from carbon oxide[J]. Ber Dtsch Chem Ges, 1923, 56: 2428-2443.
[2] Fischer F, Tropsch H. On some characteristics of the sythetic crude oil carbon hydrogen from carbon oxyde under usual pressure[J]. Ber Dtsch Chem Ges, 1926, 59: 923-925.
[3] Choudhary T V, Choudhary V R. Energy-efficient syngas production through, catalytic oxy-methane reforming reactions[J]. Angewandte Chemie-International Edition, 2008, 47(10): 1828-1847.
[4] Matsumura Y, Minowa T, Potic B, et al. Biomass gasification in near- and super-critical water: Status and prospects[J]. Biomass Bioenerg, 2005, 29(4): 269-292.
[5] Eilers J, Posthuma S A, Sie S T. The Shell Middle Distillate Synthesis Process (Smds)[J]. Catalysis Letters, 1991, 7(1-4): 253-269.
[6] Knottenbelt C, Mossgas “gas-to-liquid” diesel fuels–an environmentally friendly option[J]. Catalysis Today, 2002, 71(3-4), 437-445.
[7] Vannice M A. Catalytic Synthesis of Hydrocarbons from H2-CO Mixtures over Group-8 Metals: I. Specific Activities and Product Distributions of Supported Metals[J]. Journal of Catalysis, 1975, 3(3): 449-461.
[8] Boerrigter H, Rauch R. Syngas production and utilisation, in: Knoef, H. A.. M.(Ed.), Handbook Biomass Gasification, BTG biomass technology group[M]. The Netherlands, 2005, 211-230.
[9] Yung M M, Jablonski W S, Magrini-Bair K A. Review of Catalytic Conditioning of Biomass-Derived Syngas[J]. Energy Fuels, 2009, 23: 1874-1887.
[10] Bartholomew C H. Recent technological developments in Fischer-Tropsch catalysis[J]. Catalysis Letters, 1990, 7(1-4): 303-315.
[11] Steynberg A P, Espinoza R L, Jager B, et al. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Applied Catalysis a-General, 1999, 186(1-2): 41-54.
[12] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J]. Advanced Materials, 2006, 18(16): 2073-2094.
[13] Liang C D, Li Z J, Dai S. Mesoporous carbon materials: Synthesis and modification[J]. Angewandte Chemie- International Edition, 2008, 47(20): 3696-3717.
[14] Pan X L, Bao X H. Reactions over catalysts confined in carbon nanotubes[J]. Chemical Communications, 2008, (47): 6271-6281.
[15] Stein A, Wang Z Y, Fierke M A. Functionalization of Porous Carbon Materials with Designed Pore Architecture[J]. Advanced Materials, 2009, 21(3): 265-293.
[16] Serp P, Castillejos E. Catalysis in Carbon Nanotubes[J]. Chemcatchem, 2010, 2(1): 41-47.
[17] Wang D, Yang G H, Ma Q X, et al. Confinement Effect of Carbon Nanotubes: Copper Nanoparticles Filled Carbon Nanotubes for Hydrogenation of Methyl Acetate[J]. Acs Catalysis, 2012, 2(9): 1958-1966.
[18] Xie W, Zhang Y H, Liew K Y, et al. Effect of catalyst confinement and pore size on Fischer-Tropsch synthesis over cobalt supported on carbon nanotubes[J]. Science China Chemistry, 2012, 55(9): 1811-1818.
[19] Yu L, Li W X, Pan X L, et al. In- and Out-Dependent Interactions of Iron with Carbon Nanotubes[J]. Journal of Physical Chemistry C, 2012, 116(31): 16461-16466.
[20] Pan X L, Bao X H. The Effects of Confinement inside Carbon Nanotubes on Catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 553-562.
[21] Chen W, Pan X L, Bao X H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(23): 7421-7426.
[22] Chen W, Fan Z L, Pan X L, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419.
[23] Chen W, Pan X L, Willinger M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates[J]. Journal of the American Chemical Society, 2006, 128(10): 3136-3137.
[24] Yang Z Q, Pan X L, Wang J H, et al. FeN particles confined inside CNT for light olefin synthesis from syngas: Effects of Mn and K additives[J]. Catalysis Today, 2012, 186(1): 121-127.
[25] Abbaslou R M M, Tavassoli A, Soltan J, et al. Iron catalysts supported on carbon nanotubes for Fischer- Tropsch synthesis: Effect of catalytic site position[J]. Applied Catalysis a-General, 2009, 367(1-2): 47-52.
[26] Sun Z K, Sun B, Qiao M H, et al. A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles- Incorporated Ordered Mesoporous Carbon Catalysts for Fischer-Tropsch Synthesis[J]. Journal of the American Chemical Society, 2012, 134(42): 17653-17660.
[27] Davis B H. Fischer-Tropsch Synthesis: Reaction mechanisms for iron catalysts[J]. Catalysis Today, 2009, 141: 25-33.
[28] Visconti C G, Tronconi E, Lietti L, et al. Detailed Kinetics of the Fischer-Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation[J]. Topics in Catalysis, 2011, 54: 786-800.
[29] Gracia J, Prinsloo F, Niemantsverdriet J. Mars-van Krevelen-like Mechanism of CO Hydrogenationon an Iron Carbide Surface[J]. Catalysis Letters, 2009, 133: 257-261.
[30] Eliason S A, Bartholomew C H. in Catalyst Deactivation, ed. C. H. Bartholomew and J. B. Butt[M]. Elsevier, Amsterdam, 1991. 211.
[31] Nakhaei Pour A, Reza Housaindokht M, Zarkesh J, et al. Studies of carbonaceous species in alkali promoted iron catalysts during Fischer-Tropsch synthesis[J]. Journal of Industrial and Engineering Chemistry, 2010, 16: 1025-1032.
[32] Yang Y, Xiang H W, Xu Y Y, et al. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis a-General, 2004, 266(2): 181-194.
[33] Liu F X, Hao Q L, Wang H, et al. Effect of potassium promoter on reaction performance of iron-based catalyst for Fischer-Tropsch synthesis in slurry reactor[J]. Chinese Journal of Catalysis, 2004, 25(11): 878-886.
[34] Ngantsoue-Hoc W, Zhang Y Q, O’Brien R J, et al. Fischer-Tropsch synthesis: activity and selectivity for Group I alkali promoted iron-based catalysts[J]. Applied Catalysis a-General, 2002, 236(1-2): 77-89.
[35] Lohitharn N, Goodwin J G. Effect of K promotion of Fe and FeMn Fischer-Tropsch synthesis catalysts: Analysis at the site level using SSITKA[J]. Journal of Catalysis, 2008, 260(1): 7-16.
[36] Zhang C H, Yang Y, Teng B T, et al. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. Journal of Catalysis, 2006, 237(2): 405-415.
[37] Lohitharn N, Goodwin J G, Lotero E. Fe-based Fischer- Tropsch synthesis catalysts containing carbide-forming transition metal promoters[J]. Journal of Catalysis, 2008, 255(1): 104-113.
[38] Lohitharn N, Goodwin J G. Impact of Cr, Mn and Zr addition on Fe Fischer-Tropsch synthesis catalysis: Investigation at the active site level using SSITKA[J]. Journal of Catalysis, 2008, 257(1): 142-151.
[39] Campos A, Lohitharn N, Roy A, et al. An activity and XANES study of Mn-promoted, Fe-based Fischer- Tropsch catalysts[J]. Applied Catalysis a-General, 2010, 375(1): 12-16.
[40] Luo M S, Davis B H. Fischer-Tropsch synthesis: Group II alkali-earth metal promoted catalysts[J]. Applied Catalysis a-General, 2003, 246(1): 171-181.
[41] Gallegos N G, Alvarez A M, Cagnoli M V, et al. Selectivity to olefins of Fe/SiO2-MgO catalysts in the Fischer-Tropsch reaction[J]. Journal of Catalysis, 1996, 161(1): 132-142.
[42] Yang J, Sun Y C, Tang Y, et al. Effect of magnesium promoter on iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis a-Chemical, 2006, 245(1-2): 26-36.
[43] Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Review, 2007, 107(5): 1692-1744.
[44] Soled S L, Iglesia E, Fiato R A, et al. Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts[J]. Topics in Catalysis, 2003, 26(1-4): 101-109.
[45] Davis B H. Fischer-Tropsch synthesis: Overview of reactor development and future potentialities[J]. Topics in Catalysis, 2005, 32(3-4): 143-168.
[46] Kitakami O, Sato H, Shimada Y, et al. Size effect on the crystal phase of cobalt fine particles[J]. Physical Review B, 1997, 56 (21): 13849-13854.
[47] Karaca H, Hong J P, Fongarland P, et al. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer- Tropsch synthesis[J]. Chemical Communications, 2010, 46(5): 788-790.
[48] Bezemer G L, Bitter J H, Kuipers H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts[J]. Journal of the American Chemical Society, 2006, 128(12): 3956-3964.
[49] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Applied Catalysis a-General, 1997, 161(1-2): 59-78.
[50] den Breejen J P, Radstake P B, Bezemer G L, et al. On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis[J]. Journal of the American Chemical Society, 2009, 131(20): 7197-7203.
[51] Borg O, Dietzel P D C, Spjelkavik A I, et al., Fischer- Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution[J]. Journal of Catalysis, 2008, 259(2): 161-164.
[52] Storsaeter S, Totdal B, Walmsley J C, et al. Characterization of alumina-, silica-, and titania-supported cobalt Fischer- Tropsch catalysts[J]. Journal of Catalysis, 2005, 236 (1): 139-152.
[53] Bartholomew C H, Reuel R C. Cobalt Support Interactions–Their Effects on Adsorption and Co Hydrogenation Activity and Selectivity Properties[J]. Ind Eng Chem Prod Rd, 1985, 24(1): 56-61.
[54] Tsubaki N, Sun S L, Fujimoto K. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2001, 199(2): 236-246.
[55] Chu W, Chernavskii P A, Gengembre L, et al. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2007, 252(2): 215-230.
[56] Moradi G R, Basir M M, Taeb A, et al. Promotion of CO/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catalysis Communications, 2003, 4(1): 27-32.
[57] Jongsomjit B, Panpranot J, Goodwin J G. Effect of zirconia-modified alumina on the properties of Co/gamma-Al2O3 catalysts[J]. Journal of Catalysis, 2003, 215(1): 66-77.
[58] Xiong H F, Zhang Y H, Liew K, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis a-Chemical, 2005, 231(1-2): 145-151.
[59] Morales F, de Smit E, de Groot F M F, et al. Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2007, 246(1): 91-99.
[60] Feltes T E, Espinosa-Alonso L, de Smit E, et al. Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2010, 270(1): 95-102.
[61] Ryan K M, Coleman N R B, Lyons D M, et al. Control of pore morphology in mesoporous silicas synthesized from triblock copolymer templates[J]. Langmuir, 2002, 18(12): 4996-5001.
[62] Sun J M, Bao X H. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts[J]. Chemistry–A European Journal, 2008, 14(25): 7478- 7488.
[63] Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. Journal of Catalysis, 2002, 206(2): 230-241.
[64] Tang Q H, Wang P, Zhang Q H, et al. Utilization of microporous and mesoporous materials as supports of cobalt catalysts for regulating product distributions in Fischer-Tropsch synthesis[J]. Chemistry Letters, 2006, 35(4): 366-367.
[65] Martinez A, Lopez C, Marquez F, et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters[J]. Journal of Catalysis, 2003, 220(2): 486-499.
[66] Xiong H, Zhang Y, Liew K, et al. Fischer-Tropsch synthesis: The role of pore size for Co/SBA-15 catalysts[J]. Journal of Molecular Catalysis a-Chemical, 2008, 295(1-2): 68-76.
[67] Liu Y C, Fang K G, Chen J G, et al. Effect of pore size on the performance of mesoporous zirconia-supported cobalt Fischer-Tropsch catalysts[J]. Green Chemistry, 2007, 9(6): 611-615.
[68] Sun B, Qiao M H, Fan K N A, et al. Fischer-Tropsch Synthesis over Molecular Sieve Supported Catalysts[J]. Chemcatchem, 2011, 3(3): 542-550.
[69] Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angewandte Chemie-International Edition, 2008, 47(2): 353-356.
[70] He J J, Yoneyama Y, Xu B L, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins[J]. Langmuir, 2005, 21(5): 1699-1702.
[71] Li C L, Xu H Y, Kido Y, et al. A Capsule Catalyst with a Zeolite Membrane Prepared by Direct Liquid Membrane Crystallization[J]. Chemsuschem, 2012, 5(5): 862-866.
[72] Bao J, Yang G H, Okada C, et al. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas[J]. Applied Catalysis a-General, 2011, 394(1-2): 195-200.
[73] Yang G H, Wang D, Yoneyama Y, et al. Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis[J]. Chemical Communications, 2012, 48(9): 1263-1265.
[74] Yu G B, Sun B, Pei Y, et al. FexOy@C Spheres as an Excellent Catalyst for Fischer-Tropsch Synthesis[J]. Journal of the American Chemical Society, 2010, 132(3): 935-937.
[75] Li Y X, Yao L H, Song Y Y, et al. Core-shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition[J]. Chemical Communications, 2010, 46(29): 5298-5300.
[76] Calderone V R, Shiju N R, Ferre D C, et al. De Novo Design of Nanostructured Iron-Cobalt Fischer-Tropsch Catalysts[J]. Angewandte Chemie-International Edition, 2013, 52(1): 1-6.
[77] Leckel D. Diesel Production from Fischer-Tropsch: The Past, the Present, and New Concepts[J]. Energy Fuels, 2009, 23(5): 2342-2358.
[78] Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass–A technology review from 1950 to 2009[J]. Fuel, 2010, 89(8): 1763-1783.
[79] Fermoso J, Arias B, Gil M V, et al. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production[J]. Bioresource Technol 2010, 101(9), 3230-3235.
[80] Smoliński A, Howaniec N, Stańczyk K. A comparative experimental study of biomass, lignite and hard coal steam gasification[J]. Renewable Energy, 2011, 36(6): 1836-1842.
[81] Kim Y S, Lee J J, Kim T S, et al. Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle[J]. Energy Conversion and Management, 2011, 52(5): 2262-2271.
[82] van Steen E, Claeys M. Fischer-Tropsch Catalysts for the Biomass-to-Liquid (BTL)-Process[J]. Chemical engineering & technology, 2008, 31(5): 655-666.
[83] Escalona N, Medina C, Garcia R, et al. Fischer Tropsch reaction from a mixture similar to biosyngas. Influence of promoters on surface and catalytic properties of Co/SiO2 catalysts[J]. Catalysis Today, 2009, 143(1): 76-79.
[84] Jun K W, Roh H S, Kim K S, et al. Catalytic investigation for Fischer-Tropsch synthesis from bio-mass derived syngas[J]. Applied Catalysis A: General, 2004, 259(2): 221-226.
[85] Dutta A, Acharya B. Production of bio-syngas and biohydrogen via gasi?cation[A]. ed. Luque R., Campelo J. M. and Clark J. H., Handbook of Biofuels Production: Processes and Technologies[M], Cambridge, UK, Woodhead Publishing Ltd., 2010, ch. 16: 420-457.
[86] Lappas A, Heracleous E. Production of biofuels via hydrothermal conversion[A]. ed. Luque R., Campelo J. M. and Clark J. H., Handbook of Biofuels Production: Processes and Technologies[M], Cambridge, UK, Woodhead Publishing Ltd., 2010, ch. 18: 478-489.
[87] Meng X, De Jong W, Pal R, et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review[J]. Fuel Processing Technology, 2010, 91(8): 964-981.
[88] Pansare SS, Allison JD. An investigation of the effect of ultra-low concentrations of sulfur on a Co/gamma-Al2O3 Fischer-Tropsch synthesis catalyst[J]. Applied Catalysis A: General, 2010, 387: 224-230.
[89] Kritzinger J A. The role of sulfur in commercial iron-based Fischer-Tropsch catalysis with focus on C2-product selectivity and yield[J]. Catalysis today, 2002, 71(3): 307-318.
[90] Robota HJ, Alger J, Pretorius PJ. Impact of low levels of ammonia in syngas on the Fischer-Tropsch synthesis performance of cobalt and iron catalysts in fixedbed operation[C]. National Spring Meeting of the American Institute of Chemical Engineers. Houston, TX: American Institute of Chemical Engineers; 2012.
[91] Dalai A K, Davis B H. Fischer-Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts[J]. Applied Catalysis A: General, 2008, 348(1): 1-15.
[92] Yao Y, Hildebrandt D, Glasser D, et al. Fischer-Tropsch Synthesis Using H2/CO/CO2 Syngas Mixtures over a Cobalt Catalyst[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 11061-11066.
[93] Riedel T, Claeys M, Schulz H, et al. Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe-and Co-based catalysts[J]. Applied Catalysis A: General, 1999, 186(1): 201-213.