Welcome to visit Advances in New and Renewable Energy!

Synthesis of Novel Silicon Oxycarbonitride Anode Material and Controllable Chemical Prelithiation

  • Xinyue ZHAO 1, 2, 3 ,
  • Jinlong HU 1, 2, 3 ,
  • He YAN 4 ,
  • Xianjian DUAN 4 ,
  • Chunlei WU 4 ,
  • Yuelin WANG 4 ,
  • Lingzhi ZHANG , 1, 2, 3,
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
  • 2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
  • 3. Guangdong Provincial Key Laboratory of Renewable Energy, Guangzhou 510640, China
  • 4. Guangzhou Huifu Research Institute Co. LTD., Guangzhou 510663, China

Received date: 2024-07-15

  Revised date: 2024-07-25

  Online published: 2024-12-30

Copyright

版权所有 © 《新能源进展》编辑部

Abstract

A novel silicon oxycarbonitride (SiOCN) anode material is synthesized through an aldimine condensation of 3-aminopropyl triethoxysilane (APTES) with glutaraldehyde (GA) and simultaneous hydrolysis of APTES, followed by subsequent thermal pyrolysis. A chemical prelithiation method using lithium-biphenyl (Li-BP) as the lithiation reagent and a 2-methyl tetrahydrofuran (2-MeTHF) solution as the reducing solvent is designed to enhance the initial Coulombic efficiency (ICE) for SiOCN anodes. The prelithiation extent can be easily controlled by tuning the reaction time. A solid electrolyte interface layer is formed during chemical prelithiation. After dipping in 1 mol/L lithium reagent for 30 s, prelithiated SiOCN/Li half-cell ICE can be increased from 73.6% to 90.4%. Compared with the original cell, the prelithiated SiOCN/Li half-cell exhibits equivalent cycling performance, delivering a stable specific capacity of 604 mA∙h/g after 195 cycles with a retention rate of 98.5% at 1 A/g current density. When matched with an NCM811 cathode, the full cell exhibits an improved ICE from 46.3% to 78.6%. The pre-lithium SiOCN anode shows a performance of high ICE, high capacity and long cycle stability, which promises great application in high-energy lithium batteries.

Cite this article

Xinyue ZHAO , Jinlong HU , He YAN , Xianjian DUAN , Chunlei WU , Yuelin WANG , Lingzhi ZHANG . Synthesis of Novel Silicon Oxycarbonitride Anode Material and Controllable Chemical Prelithiation[J]. Advances in New and Renewable Energy, 2024 , 12(6) : 664 -670 . DOI: 10.3969/j.issn.2095-560X.2024.06.006

0 引言

随着全球碳达峰、碳中和目标的提出,新能源汽车产业升级对动力电池能量密度提出了更高要求。硅负极材料具有超高理论比容量(Li22Si5,4 200 mA∙h/g)和低脱锂电位(0.4 V,相对Li/Li+ 电极),且地壳中硅元素含量丰富,是最具潜力的下一代高能量密度锂电池负极材料[1,2]。然而,硅负极材料导电性差,并且在嵌/脱锂过程中存在巨大的体积效应(体积变化大于300%),导致极片出现开裂、粉化及剥落的问题,电池容量快速衰减,严重阻碍了其实际应用[3,4]。为缓解这一问题,已有一系列提高硅基材料寿命的报道,如减小粒径[5,6]、碳涂层包覆[7,8]、复合体系[9,10,11],其中普遍认为SiOx结构可有效缓解体积膨胀,碳复合则能够提高导电性。
与普通硅碳复合材料相比,通过高分子聚合和热解方法合成的硅氧碳(SiOC)负极材料是一种新型的硅基负极材料,其特点是形成纳米级的SiOx畴和游离碳的导电网络,在脱嵌锂过程中具有较小的体积变化和较高理论比容量(~1 300 mA∙h/g)[12,13],电池的循环寿命大幅提升。ZHOU等[14]采用3-氨基丙基三乙氧基硅烷(3-aminopropyl triethoxysilane, APTES)和双醛化合物,通过醛胺缩合和高温热解制备的SOx/C HS-TA硅氧碳负极材料,在1 A/g电流密度下,第100圈和1 000圈的比容量分别为543.5、469.2 mA∙h/g,表现出超稳定的循环寿命,1 000圈循环的平均库仑效率达到99.73%。LIU等[15]以乙烯基三乙基氧基硅烷和间苯二酚/甲醛为原料制备了单分散SiOx/C微球,在0.5 A/g电流密度下,比容量为689 mA∙h/g,循环400圈后容量保持率为91.0%。SiOC材料优异的循环稳定性在高能量密度锂电池中具有很好的应用前景,但SiOx在首次嵌锂过程不可逆反应生成Li2O和硅酸盐消耗活性锂,导致首次库仑效率低,仍是亟需解决的问题。
近年来,采用化学预锂化提高负极材料的首次库仑效率是一种安全、高效、可工业化的方法。化学预锂化技术是使用还原性强的含锂试剂,通过氧化还原反应将活性锂转移到负极材料上,实现预锂化[16]。锂离子电池的负极预锂化试剂有正丁基锂、奈锂、联苯锂(lithium-biphenyl, Li-BP)、9,9-二甲基芴锂等[17,18,19,20,21],这些锂化试剂具有优异的流动性和浸润性,可通过控制反应溶液浓度和接触时间等调节负极材料的预锂化程度。一般具有较低氧化还原电位预锂化试剂的预锂化能力越强,如联苯锂和9,9-二甲基芴锂。JANG等[19]研究了联苯(biphenyl, BP)衍生物的结构调控预锂化试剂的氧化还原电位,精确控制SiOx负极的预锂化程度和均匀性,使电池首次库仑效率大于100%。LAI等[21]采用Li-BP/2-甲基四氢呋喃(2-methyl tetrahydrofuran, 2-MeTHF)溶液对硅/碳/石墨三种材料的复合物进行预锂化,电池首次库仑效率从76.8%提高到93.98%,并证明形成的固体电解质界面(solid electrolyte interface, SEI)膜由Li2O/Li2CO3组成,以及形成LixSiy合金相。
本文采用APTES和戊二醛(glutaraldehyde, GA)在水和乙醇中进行醛胺缩合制备聚合物前驱体,再经过热解得到纳米球形SiOCN负极材料。选用价格低廉且具有低氧化还原电位的Li-BP/2-MeTHF为锂化试剂,通过简单的浸渍法,实现SiOCN电极的有效预锂化,测试材料的结构和电化学性能,并对电极界面进行表征。采用预锂化后的SiOCN负极与NCM811正极组装全电池,对比电池充放电性能。

1 实验部分

1.1 SiOCN材料合成

SiOCN通过APTES与GA发生醛胺缩合反应生成前驱体再进行热解制备[22]。在500 mL烧瓶中加入240 mL去离子水和60 mL乙醇并混合均匀,再加入APTES(2.66 g,12 mmol),在500 r/min转速搅拌下,将GA(1.20 g,12 mmol)缓慢滴加到上述混合液中快速产生沉淀,室温下持续搅拌12 h,过滤沉淀物,再分别用去离子水和乙醇清洗2次,放入真空烘箱60β℃干燥12 h得到棕黄色前驱体。前驱体粉末研磨后,在Ar气氛下管式炉中400β℃预煅烧1 h,1 100β℃煅烧3 h,升温速率为3β℃/min,自然冷却至室温获得黑色SiOCN粉末。

1.2 电极材料制备及极片预锂化

SiOCN负极极片制备:将SiOCN、Super P和羧甲基纤维素钠按照质量比8:1:1混合,加入一定量的去离子水制成均匀的浆料涂布在铜箔上,然后在60β℃烘箱中干燥3 h,用辊压机压实,切成直径为14 mm的电极片,在真空干燥箱中110β℃烘干12 h,活性物质负载量约2.0 mg/cm2。NCM811正极极片制备:将NCM811、Super P和聚偏氟乙烯按照质量比90:5:5混合,加入一定量的N-甲基吡咯烷酮制成均匀的浆料涂布在铝箔上,后续工艺与制备负极极片相同,活性物质负载量约8.2 mg/cm2
在手套箱内,将0.771 g联苯加入5 mL的2-MeTHF中混合均匀,再将0.034 7 g金属锂剪成小块加入混合溶液中,搅拌2 h得到深蓝绿色1 mol/L的Li-BP/2-MeTHF溶液。将SiOCN负极片浸渍在Li-BP/2-MeTHF溶液中一定时间后取出,再用2-MeTHF洗涤电极片表面去除残留溶液,然后抽真空干燥10 min。SiOCN极片在Li-BP/2-MeTHF溶液中浸渍时间分别为0 s、30 s、1 min、10 min、30 min和60 min,相应样品标记为SiOCN、pSiOCN-0.5、pSiOCN-1、pSiOCN-10、pSiOCN-30、pSiOCN-60。

1.3 材料表征

采用X射线衍射仪(X-ray diffractometer, XRD)(日本,Rigaku Corporation,Smartlab)对样品进行组成和物相分析,采用Cu靶Kα射线,扫描范围为2θ = 5°~80°。采用傅里叶变换红外光谱仪(Fourier transform infrared spectrometer, FTIR)(美国,Thermo Fisher Scientific,Nicolet iS50/Nicolet iN10)和激光共聚焦拉曼光谱仪(法国,HORIBA JOBIN YVON,LabRAM HR800)分析材料结构,激光波长为532 nm。采用扫描电子显微镜(scanning electron microscope, SEM)(日本,HITACHI,SU-70,工作电压2 kV)和能量散射光谱仪(energy dispersive spectrometer, EDS)表征材料的形貌和元素,预锂化后SiOCN极片采用专用密封样品台进行转移,避免与空气接触。

1.4 电化学性能测试

电池组装在充满氩气的手套箱中进行,以SiOCN电极片为正极,金属锂片为负极,Celgard2400为隔膜,1.0 mol/L六氟磷酸锂(溶剂碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯体积比为1:1:1)再加入质量浓度为10%的氟代碳酸乙烯酯作为电解液,组装成CR2025型扣式半电池。以NCM811为正极、SiOCN为负极组装全电池,容量的N/P比为1.2。在深圳Neware电池充放电测试仪(BTS-610)上对电池进行充放电循环性能测试,SiOCN/Li半电池的电压范围为0.01~3.0 V,在0.2 A/g电流密度下循环3次,然后在1 A/g电流密度下,循环200圈。NCM811/SiOCN全电池在电压范围2.7~4.3 V,以0.2 C充放电循环3次后,在0.5 C循环100圈。用德国Zahner公司电化学工作站(IM6)测试电化学阻抗谱(electrochemical impedance spectroscopy, EIS),采用的交流信号频率范围为0.01 Hz~100 kHz,振幅为5 mV,并利用Zview软件拟合。

2 结果与讨论

SiOCN负极材料的结构和形貌分析如图1所示。
Fig. 1 SEM image (a), XRD pattern (b), FTIR spectra (c), and Raman spectra (d) of SiOCN material

图1 SiOCN材料的SEM图像(a)、XRD图谱(b)、FTIR谱图(c)和拉曼谱图(d)

图1(a)中,SEM图像显示经过1 100β℃高温煅烧后制备的SiOCN负极为单分散的球形颗粒,尺寸在100~400 nm之间,EDS面扫描显示主要元素为Si、O、C、N,含量分别为20.1%、38.6%、40.3%、1.0%,这种纳米球形结构和由聚合物高温煅烧后形成的碳网络有利于减小硅基负极在充放电过程中的体积效应,同时改善材料的导电性[23]。XRD图谱[图1(b)]显示在23°β和43°β的两个宽衍射峰可以归因于无定型的SiOx和碳[24];FTIR光谱中[图1(c)],在816 cm-1处为Si-C伸缩振动峰,在1 103 cm-1和476 cm-1处为Si-O-Si反对称伸缩振动峰和对称伸缩振动峰[25],表明SiOCN负极材料的主要成分为无定型的SiOx和碳。拉曼光谱中[图1(d)],在1 324 cm-1和1 591 cm-1处出现了典型的碳特征峰,分别对应碳组分中的无定型(D峰)和层状(G峰)石墨结构[26],强度比(ID/IG)为1.1,表明SiOCN结构以无定型碳为主。
测试SiOCN负极的首次充放电性能,并通过不同的预锂化时间分析Li-BP/2-MeTHF溶液对SiOCN负极的预锂化效率。如图2所示,在0.2 A/g电流密度下,SiOCN/Li半电池的首次库仑效率为73.6%,充电/放电比容量分别为901 mA∙h/g和1 225 mA∙h/g。而经过30 s、1 min、10 min、30 min和60 min预锂化后,SiOCN/Li半电池的开路电位和放电曲线的电压平台都明显降低,表明负极达到了一定的锂化程度,且预先形成了SEI层,减少了不可逆容量损耗[18,21,27]。预锂化后对应的首次库仑效率明显提高,分别为90.4%、149.0%、169.4%、171.4%、224.9%;放电比容量明显降低,分别为1 047、608、500、468、314 mA∙h/g。结果显示,超过30 s浸渍的首次库仑效率远超100%,表明Li-BP/2-MeTHF溶液对SiOCN负极能够有效且快速地实现预锂化,消除其首次不可逆容量损失,但过度预锂化对电池意义不大,因此后续选择SiOCN和pSiOCN-0.5进行半电池和全电池性能的比较。
Fig. 2 Initial charge/discharge curves (a), and initial charge/discharge capacities and Coulombic efficiency (b) of SiOCN electrodes with different prelithiation time

图2 不同预锂化时间SiOCN电极的首次充放电曲线(a)及首次充放电比容量和首次库仑效率(b)

为进一步分析预锂化效果,选择pSiOCN-0.5和pSiOCN-1与原始SiOCN对比微分容量-电压(dQ/dV)曲线(图3)。dQ/dV曲线对应放电过程中电极不同的锂化阶段。图中可见,原始电极在0.27 V的强峰对应于嵌锂过程中SiOx转变为LiOxSiy[28],随着预锂化时间增加,在0.27 V处峰逐渐变小甚至消失,这表明预锂化将电极中不可逆相LiOxSiy转变完成。
Fig. 3 The dQ/dV curves derived from the discharge profiles of SiOCN, pSiOCN-0.5 and pSiOCN-1 electrodes

图3 SiOCN、pSiOCN-0.5和pSiOCN-1电极放电曲线的dQ/dV曲线

图4对比了SiOCN、pSiOCN-0.5和pSiOCN-1电极的XRD图谱和SEM图。为了避免预锂化后的极片与空气接触,所有XRD测试均采用聚丙烯(polypropylene, PP)膜密封测试,与电化学测试结果的明显差异不同,预锂化后SiOCN材料的XRD结构没有发生明显变化[图4(a)],与结构类似的SiOC报道一致[29],无定型的SiOCN与晶体Si和石墨材料的脱/嵌锂机制不同,后两者主要以合金化和去合金化为主,而SiOCN的脱/嵌锂过程始终保持无定型结构。图4(b~d)为SiOCN预锂化前后极片的表面形貌,原始SiOCN极片[图4(b)]中SiOCN颗粒表面光滑,堆积的50 nm小颗粒为导电剂Super P。图4(c、d)中可以看到pSiOCN-0.5和pSiOCN-1的SiOCN颗粒表面开始有点状物形成,并逐渐形成包覆层而变得粗糙;类似的文献报道显示Li-BP在SiOC基负极预锂化过程中预先在电极表面形成SEI膜,主要成分为Li2O/Li2CO3[21]。过量预锂化后的极片都保持稳定的结构,没有出现任何开裂的现象,活性颗粒没有明显的体积变化,表明SiOCN结构具有良好的稳定性。
Fig. 4 XRD pattern of SiOCN electrodes (a); SEM images of SiOCN (b), pSiOCN-0.5 (c), and pSiOCN-1 (d)

图4 SiOCN电极的XRD图谱(a);SiOCN(b)、pSiOCN-0.5(c)、pSiOCN-1(d)的SEM图

从动力学角度分析预锂化对SiOCN电化学性能的影响,SiOCN和pSiOCN-0.5电极循环前的Nyquist阻抗图谱及拟合的等效电路见图5。Nyquist阻抗图谱的高频区半圆通常与电极界面SEI膜有关,中频区的半圆与电极与电解质界面处的电荷转移阻抗有关,低频区的直线与锂离子在电极材料中的扩散有关[30]。图中Rs为电解液阻抗,Rsei为SEI膜阻抗,Rct为电荷转移阻抗,CPE为相对应的电容,W为扩散因子。SiOCN的阻抗由一个压缩半圆和一条直线组成,由于未发生嵌锂过程,Rct值太高以致不能形成半圆,RsRsei阻抗值分别为1.79 Ω和160.9 Ω;预锂化后pSiOCN-0.5的阻抗则由两个半圆和一条直线组成,RsRseiRct分别为2.46、126.3、64.8 Ω,表明预锂化后的SiOCN极片表面SEI膜阻抗减小,这可能与预锂化过程中SiOCN表面预先形成SEI膜有关,一般负极表面SEI膜的形成是逐渐有序和致密的过程[31];另外也与溶剂体系有关,常规碳酸酯电解液初步形成SEI膜成分主要为烷基锂和少量Li2CO3、LiO,疏松多孔[32];而Li-BP/2-MeTHF在SiOCN表面形成的SEI膜相对致密。图5(b)为SiOCN和pSiOCN-0.5半电池的循环曲线,0.2 A/g电流密度充放电循环3次后,在1 A/g电流密度下循环200圈,电池均表现出很好的循环稳定性。
Fig. 5 EIS spectra before cycling (a) and cycling performance at 1 A/g (b) of SiOCN and pSiOCN-0.5 electrodes

图5 SiOCN和pSiOCN-0.5电极循环前的EIS谱(a)及1 A/g循环性能(b)

选择1 A/g电流密度第5圈循环稳定后作为SiOCN和pSiOCN-0.5初始的比容量,分别为644.2、603.6 mA∙h/g,经过195圈循环后电池的比容量分别为630.4 mA∙h/g和595.2 mA∙h/g,容量保持率分别为97.8%和98.6%。图6为NCM811/SiOCN和NCM811/pSiOCN-0.5组成全电池的首次充放电曲线,首次库仑效率从46.3%提高至78.6%,放电比容量也从104 mA∙h/g提高至177 mA∙h/g。
Fig. 6 Initial charge/discharge curves of NCM811/SiOCN and NCM811/pSiOCN-0.5 full cells

图6 NCM811/SiOCN和NCM811/pSiOCN-0.5全电池的首次充放电曲线

3 结论

采用醛胺缩合和高温热解的方法制备了球形SiOCN复合材料,通过1 100β℃高温碳化,得到的SiOCN材料具有高比容量和优良的循环稳定性,首次库仑效率为73.6%,在1 A/g电流密度下,稳定的比容量为644.2 mA∙h/g,195圈循环后容量保持率为97.8%。采用化学预锂化的方法,通过Li-BP/2-MeTHF溶液的简单浸渍,进一步提高SiOCN负极的首次库仑效率。在浸渍30 s极短时间内,SiOCN/Li半电池的首次库仑效率可以达到90.4%,并且保持与原始极片相当的循环稳定性。与NCM811组成全电池的首次库仑效率也从46.3%提高到78.6%。通过简单预锂化的SiOCN负极具有高首次库仑效率、高容量和长循环稳定性,在高能量密度锂电池中具有很好的应用前景。
[1]
ZHANG L, WANG C R, DOU Y H, et al.A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries[J]. Angewandte chemie international edition, 2019, 58(26): 8824-8828. DOI: 10.1002/anie.201903709.

[2]
MAJEED M K, IQBAL R, HUSSAIN A, et al.Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives[J]. Critical reviews in solid state and materials sciences, 2024, 49(2): 221-253. DOI: 10.1080/10408436.2023.2169658.

[3]
LIN Z H, LI J H, HUANG Q M, et al.Insights into the interfacial instability between carbon-coated SiO anode and electrolyte in lithium-ion batteries[J]. The journal of physical chemistry C, 2019, 123(20): 12902-12909. DOI: 10.1021/acs.jpcc.9b02509.

[4]
LIU Z H, YU Q, ZHAO Y L, et al.Silicon oxides: a promising family of anode materials for lithium-ion batteries[J]. Chemical society reviews, 2019, 48(1): 285-309. DOI: 10.1039/c8cs00441b.

[5]
YAN M Y, LIU Z, LU Z Y, et al.Stable Li storage in micron-sized SiOx particles with rigid-flexible coating[J]. Journal of energy chemistry, 2022, 64: 309-314. DOI: 10.1016/j.jechem.2021.04.066.

[6]
HWANG J, KIM K, JUNG W S, et al.Facile and scalable synthesis of SiOx materials for Li-ion negative electrodes[J]. Journal of power sources, 2019, 436: 226883. DOI: 10.1016/j.jpowsour.2019.226883.

[7]
YOM J H, HWANG S W, CHO S M, et al.Improvement of irreversible behavior of SiO anodes for lithium ion batteries by a solid state reaction at high temperature[J]. Journal of power sources, 2016, 311: 159-166. DOI: 10.1016/j.jpowsour.2016.02.025.

[8]
GUO L Z, HE H Y, REN Y R, et al.Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chemical engineering journal, 2018, 335: 32-40. DOI: 10.1016/j.cej.2017.10.145.

[9]
MISHRA K, GEORGE K, ZHOU X D.Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries[J]. Carbon, 2018, 138: 419-426. DOI: 10.1016/j.carbon.2018.07.065.

[10]
ZHU B, LIU G L, LV G X, et al. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes[J]. Science advances, 2019, 5(11): eaax0651. DOI: 10.1126/sciadv.aax0651.

[11]
XIE C, XU N, SHI P Y, et al.Flexible and robust silicon/carbon nanotube anodes exhibiting high areal capacities[J]. Journal of colloid and interface science, 2022, 625: 871-878. DOI: 10.1016/j.jcis.2022.06.082.

[12]
WEN Q B, YU Z J, RIEDEL R.The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Progress in materials science, 2020, 109: 100623. DOI: 10.1016/j.pmatsci.2019.100623.

[13]
CHEN Q Q, HU J L, XIA Q, et al.Complexation-assisted polymerization for the synthesis of functional silicon oxycarbonitride with well-dispersed ultrafine CoS as high-performance anode for lithium-ion batteries[J]. Journal of alloys and compounds, 2023, 949: 169824. DOI: 10.1016/j.jallcom.2023.169824.

[14]
ZHOU X M, LIU Y, REN Y, et al.Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries[J]. Advanced functional materials, 2021, 31(21): 2101145. DOI: 10.1002/adfm.202101145.

[15]
LIU Z H, GUAN D D, YU Q, et al.Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries[J]. Energy storage materials, 2018, 13: 112-118. DOI: 10.1016/j.ensm.2018.01.004.

[16]
SCOTT M G, WHITEHEAD A H, OWEN J R.Chemical formation of a solid electrolyte interface on the carbon electrode of a Li-ion cell[J]. Journal of the electrochemical society, 1998, 145(5): 1506-1510. DOI: 10.1149/1.1838511.

[17]
ZHANG X X, QU H N, JI W X, et al.An electrode-level prelithiation of SiO anodes with organolithium compounds for lithium-ion batteries[J]. Journal of power sources, 2020, 478: 229067. DOI: 10.1016/j.jpowsour.2020.229067.

[18]
SHEN Y F, SHEN X H, YANG M, et al.Achieving desirable initial Coulombic efficiencies and full capacity utilization of Li-ion batteries by chemical prelithiation of graphite anode[J]. Advanced functional materials, 2021, 31(24): 2101181. DOI: 10.1002/adfm.202101181.

[19]
JANG J, KANG I, CHOI J, et al.Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angewandte chemie international edition, 2020, 59(34): 14473-14480. DOI: 10.1002/anie.202002411.

[20]
WANG G W, LI F F, LIU D, et al.Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries[J]. ACS applied materials & interfaces, 2019, 11(9): 8699-8703. DOI: 10.1021/acsami.8b19416.

[21]
LAI P P, LIU C Z, SUN Z, et al.A highly effective and controllable chemical prelithiation of silicon/carbon/graphite composite anodes for lithium-ion batteries[J]. Solid state ionics, 2023, 403: 116415. DOI: 10.1016/j.ssi.2023.116415.

[22]
路继群, 陈清清, 任逸伦, 等. 分级多孔纳米碳球的制备及其在锂硫电池中的应用[J]. 新能源进展, 2020, 8(6): 447-454. DOI: 10.3969/j.issn.2095-560X.2020.06.001.

[23]
QI Y, WANG G, LI S, et al.Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries[J]. Chemical engineering journal, 2020, 397: 125380. DOI: 10.1016/j.cej.2020.125380.

[24]
WU Z, CHENG X Q, TIAN D, et al.SiOC nanolayers directly-embedded in graphite as stable anode for high-rate lithium ion batteries[J]. Chemical engineering journal, 2019, 375: 121997. DOI: 10.1016/j.cej.2019.121997.

[25]
CHEN W Y, KUANG S J, WEI H S, et al.Dual carbon and void space confined SiOx/C@void@Si/C yolk-shell nanospheres with high-rate performances and outstanding cyclability for lithium-ion batteries anodes[J]. Journal of colloid and interface science, 2022, 610: 583-591. DOI: 10.1016/j.jcis.2021.11.099.

[26]
SANG Z Y, SU D, WANG J S, et al.Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs[J]. Chemical engineering journal, 2020, 381: 122677. DOI: 10.1016/j.cej.2019.122677.

[27]
ZHANG X X, QU H N, JI W X, et al.Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries[J]. ACS applied materials & interfaces, 2020, 12(10): 11589-11599. DOI: 10.1021/acsami.9b21417.

[28]
CHOI G, KIM J, KANG B.High initial Coulombic efficiency of SiO enabled by controlling SiO2 matrix crystallization[J]. ACS applied materials & interfaces, 2022, 14(39): 44261-44270. DOI: 10.1021/acsami.2c10391.

[29]
HALIM M, HUDAYA C, KIM A Y, et al.Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries[J]. Journal of materials chemistry A, 2016, 4(7): 2651-2656. DOI: 10.1039/c5ta09973k.

[30]
SHIN J, CHO E.Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries[J]. Chemistry of materials, 2018, 30(10): 3233-3243. DOI: 10.1021/acs.chemmater.8b00145.

[31]
ZHANG S S, XU K, JOW T R.EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica acta, 2006, 51(8/9): 1636-1640. DOI: 10.1016/j.electacta.2005.02.137.

[32]
WANG A P, KADAM S, LI H, et al.Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj computational materials, 2018, 4(1): 15. DOI: 10.1038/s41524-018-0064-0.

Outlines

/