CPFD Simulation on Gas-Solid Hydrodynamics of a 300 MW Circulating Fluidized Bed Boiler

ZENG Sheng-ting, CHEN Xi, MA Jin-chen, ZHAO Hai-bo

Advances in New and Renewable Energy ›› 2018, Vol. 6 ›› Issue (3) : 208-216.

PDF(4912 KB)
Welcome to visit Advances in New and Renewable Energy! May 29 2025
PDF(4912 KB)
Advances in New and Renewable Energy ›› 2018, Vol. 6 ›› Issue (3) : 208-216. DOI: 10.3969/j.issn.2095-560X.2018.03.007

CPFD Simulation on Gas-Solid Hydrodynamics of a 300 MW Circulating Fluidized Bed Boiler

  • ZENG Sheng-ting1, CHEN Xi2, MA Jin-chen2, ZHAO Hai-bo2
Author information +
History +

Abstract

Gas-solid hydrodynamics of a 300 MW circulating fluidized bed (CFB) boiler was investigated by computational particle fluid dynamics (CPFD) simulation. The flow characteristics of the chamber and loop seal were analyzed in detail. Operation states and key parameters of the CFB boiler, such as the solid volume fraction distribution, velocity field, system pressure, the solid circulating rate and the operational condition of loop seal were evaluated to optimize the operation of the boiler. Results showed that the solid volume fraction distribution along the furnace height was obviously distinguished as a dense-phase zone at the bottom of boiler and a dilute-phase zone at the upper part of the boiler. The solid volume fraction and velocity field in dense-phase were influenced by the bed inventory, which was returned from the loop seal. It was found that these effects were gradually reduced along the height of CFD boiler. The pressure from simulation agreed with the results obtained in actual production, which showed that CPFD is an effective way for CFB simulation. It was noted that the pressure drop at loop seal was the maximum because of its function of the pressure balance for CFB, which was in line with the distribution of bed inventory. The solid bed inventory in recycle chamber was fluidized more intense than that in supply chamber and in supply chamber, material was steadily fluidized with the bubbles escaping along the wall.

Key words

circulating fluidized boiler / gas-solid hydrodynamics / CPFD simulation / 300 MW / loop seal

Cite this article

Download Citations
ZENG Sheng-ting, CHEN Xi, MA Jin-chen, et al. CPFD Simulation on Gas-Solid Hydrodynamics of a 300 MW Circulating Fluidized Bed Boiler[J]. Advances in New and Renewable Energy, 2018, 6(3): 208-216 https://doi.org/10.3969/j.issn.2095-560X.2018.03.007

References

[1] 程乐鸣, 周星龙, 郑成航, 等. 大型循环流化床锅炉的发展[J]. 动力工程, 2008, 28(6): 817-826. DOI: 10.3321/j.issn:1000-6761.2008.06.001.
[2] 孙献斌, 黄中. 大型循环流化床锅炉技术与工程应用[M]. 北京: 中国电力出版社, 2009.
[3] 胡南, 王巍, 姚宣, 等. 38m/54m高循环流化床床内流体动力特性研究[J]. 中国电机工程学报, 2009, 29(26): 7-12.
[4] 周星龙, 程乐鸣, 张俊春, 等. 六回路循环流化床颗粒浓度及循环流率实验研究[J]. 中国电机工程学报, 2012, 32(5): 9-14.
[5] 张缦, 吴海波, 孙运凯, 等. 大型循环流化床锅炉外置换热器运行特性分析[J]. 中国电机工程学报, 2012, 32(14): 42-48.
[6] 刘汉周, 卢啸风, 唐家毅. 300MW循环流化床锅炉分离器入口烟道气固流动特性研究[J]. 中国电机工程学报, 2009, 29(32): 6-11.
[7] XIE J, ZHONG W Q, SHAO Y J, et al. Simulation of Combustion of municipal solid waste and coal in an industrial-scale circulating fluidized bed boiler[J]. Energy & fuels, 2017, 31(12): 14248-14261.
[8] 谢俊, 可燃固废/煤的燃烧/热解/气化过程的三维数值模拟[D]. 南京: 东南大学, 2015.
[9] 张彦军, 姜孝国. 超临界CFB锅炉炉内流场数值模拟[J]. 热力发电, 2009, 38(7): 32-35. DOI: 10.3969/j.issn. 1002-3364.2009.07.032.
[10] 许霖杰, 程乐鸣, 邹阳军, 等. 1000MW超临界循环流化床锅炉环形炉膛气固流动特性数值模拟[J]. 中国电机工程学报, 2015, 35(10): 2480-2486. DOI: 10.13334/j. 0258-8013.pcsee.2015.10.014.
[11] 王超, 程乐鸣, 周星龙, 等. 600MW超临界循环流化床锅炉炉膛气固流场的数值模拟[J]. 中国电机工程学报, 2011, 31(14): 1-7.
[12] SNIDER D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of computational physics, 2001, 170(2): 523-549. DOI: 10.1006/jcph.2001.6747.
[13] O’ROURKE P J, ZHAO P, SNIDER D. A model for collisional exchange in gas/liquid/solid fluidized beds[J]. Chemical engineering science, 2009, 64(8): 1784-1797. DOI: 10.1016/j.ces.2008.12.014.
[14] Snider D M, Clark S M, O’Rourke P J. Eulerian- Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers[J]. Chemical engineering science, 2011, 66(6): 1285-1295. DOI: 10.1016/j.ces.2010.12.042.
[15] Wang Q G, Yang H R, Wang P N, et al. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part I—Determination of modeling parameters[J]. Powder technology, 2014, 253: 814-821. DOI: 10.1016/j.powtec.2013.11.041.
[16] Wang Q G, Yang H R, Wang P N, et al. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal Part II—Investigation of solids circulation[J]. Powder technology, 2014, 253: 822-828. DOI: 10.1016/j.powtec.2013.11.040.
[17] 邱桂芝, 叶佳敏, 王海刚, 等. 大型循环流化床环形炉膛中气固流动特性的CPFD数值模拟[J]. 中国科学院大学学报, 2016, 33(2): 218-222. DOI: 10.7523/j.issn. 2095-6134.2016.02.011.
[18] 张瑞卿, 杨海瑞, 吕俊复. 应用于循环流化床锅炉气固流动和燃烧的CPFD数值模拟[J]. 中国电机工程学报, 2013, 33(23), 75-83.
[19] 蒋宇. 多分离器循环流化床气固流动CPFD数值计算研究[D]. 北京: 中国科学院大学, 2014: 35-36.
[20] 邱桂芝. 大型循环流化床环形炉膛气固流动特性CPFD数值模拟和实验研究[D]. 北京: 中国科学院大学, 2015: 23-24.
PDF(4912 KB)

64

Accesses

0

Citation

Detail

Sections
Recommended

/