Ag/Al2O3(Li2O)/g-C3N4 for Photocatalytic Conversion of Ethanol into Ethylene Oxide

CHEN Ya-qian, LI Juan, WU Liang-peng, WANG Nan, LI Xin-jun

Advances in New and Renewable Energy ›› 2018, Vol. 6 ›› Issue (3) : 245-248.

PDF(636 KB)
Welcome to visit Advances in New and Renewable Energy! May 22 2025
PDF(636 KB)
Advances in New and Renewable Energy ›› 2018, Vol. 6 ›› Issue (3) : 245-248. DOI: 10.3969/j.issn.2095-560X.2018.03.012

Ag/Al2O3(Li2O)/g-C3N4 for Photocatalytic Conversion of Ethanol into Ethylene Oxide

  • CHEN Ya-qian1,2,3,4, LI Juan1,2,3, WU Liang-peng1,2,3, WANG Nan1,2,3, LI Xin-jun1,2,3
Author information +
History +

Abstract

A series of Ag/Al2O3(Li2O)/g-C3N4 catalysts were prepared, and their performances for photocatalytic conversion of ethanol into ethylene oxide (EO) were investigated under visible light irradiation. Li2O can adjust the acidity of Al2O3 surface, effectively, so as to reduce the selectivity of the main by-product acetaldehyde. The selectivity of EO was notably influenced by the loading amount of Ag/Al2O3(Li2O) on g-C3N4, which reaches 100% with high ethanol conversion when the loading amount of Ag/Al2O3(Li2O) was 5wt%.

Key words

ethylene oxide / ethanol / photocatalysis / visible light

Cite this article

Download Citations
CHEN Ya-qian, LI Juan, WU Liang-peng, et al. Ag/Al2O3(Li2O)/g-C3N4 for Photocatalytic Conversion of Ethanol into Ethylene Oxide[J]. Advances in New and Renewable Energy, 2018, 6(3): 245-248 https://doi.org/10.3969/j.issn.2095-560X.2018.03.012

References

[1] 陈雅倩, 吴梁鹏, 李娟, 等. 光化学合成太阳能燃料的研究进展[J]. 新能源进展, 2016, 4(6): 462-467. DOI: 10.3969/j.issn.2095-560X.2016.06.006.
[2] 赵楠楠. 环氧乙烷生产技术进展及产能现状[J]. 化工时刊, 2015, 29(5): 23-26. DOI: 10.3969/j.issn.1002-154X. 2015.05.008.
[3] REN D M, CHENG G, LI J W, et al. Effect of rhenium loading sequence on selectivity of Ag–Cs catalyst for ethylene epoxidation[J]. Catalysis letters, 2017, 147(12): 2920-2928. DOI: 10.1007/s10562-017-2211-5.
[4] GHANNADZADEH A, SADEQZADEH M. Combined pinch and exergy analysis of an ethylene oxide production process to boost energy efficiency toward environmental sustainability[J]. Clean technologies and environmental policy, 2017, 19(8): 2145-2160. DOI:10.1007/s10098- 017-1402-5.
[5] 张守利, 黄科林, 韦志明, 等. 生物乙醇制乙烯催化剂研究进展[J]. 化工技术与开发, 2009, 38(4): 23-27, 6. DOI: 10.3969/j.issn.1671-9905.2009.04.008.
[6] ICHIHASHI Y, MATSUMURA Y. Formation of ethylene oxide by photooxidation of ethylene over silica modified with copper[J]. Studies in surface science and catalysis, 2000, 130: 1955-1960. DOI: 10.1016/S0167- 2991(00)80488-7.
[7] ICHIHASHI Y, MATSUMURA Y. Partial photooxidation of ethylene with water as oxidant over copper oxide supported on silica[J]. Journal of catalysis, 2001, 202(2): 427-429. DOI: 10.1006/jcat.2001.3287.
[8] ICHIHASHI Y, MATSUMURA Y. Photooxidation of ethylene over Cu-modified and unmodified silica[J]. International journal of photoenergy, 2003, 5(1): 27-29. DOI: 10.1155/S1110662X03000084.
[9] ICHIHASHI Y, MATSUMURA Y. Effect of H2O on the partial photo-oxidation of ethylene over Cu/SiO2 photocatalyst[J]. Research on chemical intermediates, 2003, 29(7/9): 891-896. DOI: 10.1163/156856703322601889.
[10] LIPPITS M J, NIEUWENHUYS B E. Direct conversion of ethanol into ethylene oxide on gold-based catalysts: effect of CeOx and Li2O addition on the selectivity[J]. Journal of catalysis, 2010, 274(2): 142-149. DOI: 10.1016/j.jcat.2010.06.011.
[11] LIPPITS M J, NIEUWENHUYS B E. Direct conversion of ethanol into ethylene oxide on copper and silver nanoparticles: effect of addition of CeOx and Li2O[J]. Catalysis today, 2010, 154(1/2): 127-132. DOI: 10.1016/j.cattod.2010.03.019.
[12] ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photo- synthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical reviews, 2016, 116(12): 7159-7329. DOI: 10.1021/acs.chemrev.6b00075.
[13] LIU J, LIU Y, LIU N Y, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974. DOI: 10.1126/science.aaa3145.
[14] ZHONG Y J, WANG Z Q, FENG J Y, et al. Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine[J]. Applied surface science, 2014, 295: 253-259. DOI: 10.1016/j.apsusc.2014.01.008.
[15] MA J Q, YANG Q F, WEN Y Z, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range[J]. Applied catalysis B: environmental, 2017, 201: 232-240. DOI: 10.1016/j.apcatb.2016.08.048.
[16] ULUDA? A A, TOKUR M, ALGUL H, et al. High stable Li-air battery cells by using PEO and PVDF additives in the TEGDME/LiPF6 electrolytes[J]. International journal of hydrogen energy, 2016, 41(16): 6954-6964. DOI: 10.1016/j.ijhydene.2015.11.061.
[17] REN D M, XU H X, LI J W, et al. Origin of enhanced ethylene oxide selectivity by Cs-promoted silver catalyst[J]. Molecular catalysis, 2017, 441: 92-99. DOI: 10.1016/j.mcat.2017.08.007.
[18] LALITHA K, REDDY J K, SHARMA M V P, et al. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure-activity correlation[J]. International journal of hydrogen energy, 2010, 35(9): 3991-4001. DOI: 10.1016/j.ijhydene.2010.01.106.
[19] VIDYASAGAR D, GHUGAL S G, KULKARNI A, et al. Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: an effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation[J]. Applied catalysis B: environmental, 2018, 221: 339-348. DOI: 10.1016/j.apcatb.2017.09.030.
[20] WANG F L, WANG Y F, FENG Y P, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Applied catalysis B: environmental, 2018, 221: 510-520. DOI: 10.1016/j.apcatb.2017.09.055. 
PDF(636 KB)

78

Accesses

0

Citation

Detail

Sections
Recommended

/