
Study on Energy Efficiency and Economical Performance of Ice Source Heat Pump Based on Ice Slurry
WANG Ying-ying, SONG Wen-ji, CHEN Ming-biao, FENG Zi-ping
Advances in New and Renewable Energy ›› 2021, Vol. 9 ›› Issue (1) : 48-54.
Study on Energy Efficiency and Economical Performance of Ice Source Heat Pump Based on Ice Slurry
Ice source heat pump uses the latent heat of fresh water or seawater near freezing point, which has the characteristics of high energy efficiency and wide applicability. In order to study the energy efficiency and economy of the ice source heat pump during heating period, 5 cities of typical heating areas in China were selected as research objects. Based on the meteorological parameters of each city during heating period in recent 5 years, the system energy efficiency of air source heat pump, ice source heat pump and ground source heat pump were simulated respectively. Furthermore, the static investment payback period of ice source heat pump system was studied by calculating the initial investment and operating cost of each heat pump system. The results showed that the system energy efficiency of ice source heat pump was quiet high, which was 2.8 ~ 3.2. In terms of economy, compared with air source heat pump and ground source heat pump, the initial investment and operating cost of ice source heat pump in Harbin were the lowest, and the static investment payback periods of Beijing, Zhengzhou, Wuhan and Nanjing were 3.0, 5.1, 2.3 and 2.6 years respectively. Therefore, the ice source heat pump is a promising application during heating period.
ice slurry / ice source heat pump / energy efficiency comparison / economical performance analysis / ground source heat pump / air source heat pump {{custom_keyword}} /
Table 2 Heating days corresponding to evaporation temperature in different cities表2 不同城市蒸发温度对应供暖天数 |
热泵类型 | 条件 | 供暖天数 / d | |||||
---|---|---|---|---|---|---|---|
哈尔滨 | 北京 | 郑州 | 武汉 | 南京 | |||
空气源热泵 | 气温 / ℃ | 蒸发温度 / ℃ | |||||
-20 ~ -14 | -32 ~ -26 | 59 | - | - | - | - | |
-14 ~ -8 | -26 ~ -20 | 39 | - | - | - | - | |
-8 ~ -2 | -20 ~ -14 | 24 | 17 | - | - | - | |
-2 ~ 4 | -14 ~ -8 | 34 | 81 | 51 | 17 | 24 | |
4 ~ 10 | -8 ~ -2 | 19 | 24 | 45 | 32 | 55 | |
冰源热泵 | 地表水温 / ℃ | 蒸发温度 / ℃ | |||||
2 ~ 4 | -3 ~ -1 | 85 | - | - | - | - | |
4 ~ 6 | -1 ~ 1 | 56 | 92 | 10 | - | - | |
6 ~ 8 | 1 ~ 3 | 34 | 30 | 80 | 21 | 50 | |
8 ~ 10 | 3 ~ 5 | - | - | 6 | 28 | 29 | |
地源热泵 (蒸发温度) | 175 (3.0℃) | 122 (9.0℃) | 96 (12.3℃) | 49 (9.5℃) | 79 (9.3℃) |
Table 3 Energy efficiency of heat pumps in different cities表3 不同城市热泵系统能效 |
热泵类型 | 条件 | 系统能效 | |||||
---|---|---|---|---|---|---|---|
哈尔滨 | 北京 | 郑州 | 武汉 | 南京 | |||
空气源热泵 | 气温 / ℃ | 蒸发温度 / ℃ | |||||
-20 ~ -14 | -32 ~ -26 | 2.1 | - | - | - | - | |
-14 ~ -8 | -26 ~ -20 | 2.3 | - | - | - | - | |
-8 ~ -2 | -20 ~ -14 | 2.5 | 2.1 | - | - | - | |
-2 ~ 4 | -14 ~ -8 | 2.8 | 2.2 | 2.4 | 2.5 | 2.4 | |
4 ~ 10 | -8 ~ -2 | 3.0 | 2.6 | 2.7 | 2.6 | 2.7 | |
冰源热泵 | 地表水温 / ℃ | 蒸发温度 / ℃ | |||||
2 ~ 4 | -3 ~ -1 | 2.8 | - | - | - | - | |
4 ~ 6 | -1 ~ 1 | 2.9 | 2.9 | 3.0 | - | - | |
6 ~ 8 | 1 ~ 3 | 3.1 | 3.1 | 3.1 | 3.2 | 3.1 | |
8 ~ 10 | 3 ~ 5 | - | - | 3.2 | 3.2 | 3.2 | |
地源热泵 (蒸发温度) | 2.5 (3.0℃) | 3.0 (9.0℃) | 3.2 (12.3℃) | 3.0 (9.5℃) | 3.0 (9.3℃) |
Table 4 Electricity price and heat load in each city表4 各城市电价及热负荷 |
城市 | 电价P / [元/(kW·h)] | 热负荷q / (W/m2) |
---|---|---|
哈尔滨 | 0.72 | 43.4 |
北京 | 1.03 | 40.3 |
郑州 | 0.68 | 42.6 |
武汉 | 0.69 | 26.0 |
南京 | 0.67 | 28.0 |
Table 5 Operating cost of each heat pump system during heating period表5 各热泵系统采暖期运行成本 |
城市 | 采暖期运行成本 / 万元 | ||
---|---|---|---|
空气源热泵 | 冰源热泵 | 地源热泵 | |
哈尔滨 | 33.0 | 27.5 | 31.0 |
北京 | 15.9 | 11.9 | 11.9 |
郑州 | 11.8 | 9.2 | 8.8 |
武汉 | 4.0 | 2.7 | 2.8 |
南京 | 6.3 | 4.8 | 5.0 |
Table 6 Initial investment of different heat pump units表6 各热泵机组初投资成本 |
城市 | 初投资成本 / 万元 | ||
---|---|---|---|
空气源热泵 | 冰源热泵 | 地源热泵 | |
哈尔滨 | 150 | 130 | 174 |
北京 | 95 | 110 | 161 |
郑州 | 100 | 113 | 170 |
武汉 | 75 | 78 | 104 |
南京 | 80 | 84 | 112 |
Table 7 Static investment recovery period for ice source heat pumps in different cities表7 不同城市冰源热泵静态投资回收期 |
城市 | 投资回收期 / a |
---|---|
哈尔滨 | - |
北京 | 3.0 |
郑州 | 5.1 |
武汉 | 2.3 |
南京 | 2.6 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |