Advances in New and Renewable Energy >
Thermoelectric Property of Si1−xGex/B Multilayer Thin Film Prepared by Magnetron Sputtering
1. CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Guilin University of Electronic Technology, Guangxi Guilin 541004, China
Received date: 2016-05-02
Revised date: 2016-07-27
Online published: 2016-10-28
Unique structure (SiGe/B) based multilayer film prepared by magnetron sputtering was designed with purposes of improving electrical conductivity and Seebeck coefficient, and reducing thermal conductivity. The multilayer film contains 5 periods and each of them consisted of a 60-nm-thick Si60Ge40 layer and a 0.55-nm-thick B layer. Its thermoelectric performance was investigated and results showed that the best doping time of B was 30 s. When the annealing temperature was 650oC, the optimized film showed greatly enhanced Seebeck coefficient up to 6.75 × 10−4 V/K with decreased electrical resistivity of 1.6×10−5 Ω•m, and the maximum power factor was 0.026 W/m•K2.
DU Xin , MIAO Lei , LIU Cheng-yan , WANG Xiao-yang . Thermoelectric Property of Si1−xGex/B Multilayer Thin Film Prepared by Magnetron Sputtering[J]. Advances in New and Renewable Energy, 2016 , 4(5) : 345 -350 . DOI: 10.3969/j.issn.2095-560X.2016.05.002
[1] WHEELER T, VON BRAUN J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513. DOI: 10.1126/science.1239402.
[2] RIFFAT S B, MA X L. Thermoelectrics: a review of present and potential applications[J]. Applied thermal engineering, 2003, 23(8): 913-935. DOI: 10.1016/S1359-4311(03)00012-7.
[3] CECCHI S, ETZELSTORFER T, MÜLLER E, et al. Ge/SiGe superlattices for thermoelectric devices grown by low-energy plasma-enhanced chemical vapor deposition[J]. Journal of electronic materials, 2013, 42(7): 2030-2034. DOI: 10.1007/s11664-013-2511-5.
[4] LLIN L F, SAMARELLI A, CECCHI S, et al. The cross-plane thermoelectric properties of p-Ge/Si0.5Ge0.5 superlattices[J]. Applied physics letters, 2013, 103(14): 143507. DOI: 10.1063/1.4824100.
[5] SAMARELLI A, LLIN L F, CECCHI S, et al. The thermoelectric properties of Ge/SiGe modulation doped superlattices[J]. Journal of applied physics, 2013, 113(23): 233704. DOI: 10.1063/1.4811228.
[6] JOSHI G, LEE H, LAN Y, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys[J]. Nano letters, 2008, 8(12): 4670-4674. DOI: 10.1021/nl8026795.
[7] VINING C B, LASKOW W, HANSON J O, et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys[J]. Journal of applied physics, 1991, 69(8): 4333-4340. DOI: 10.1063/1.348408.
[8] WANG X W, LEE H, LAN Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy[J]. Applied physics letters, 2008, 93(19): 193121. DOI: 10.1063/1.3027060.
[9] STOIB B, LANGMANN T, PETERMANN N, et al. Morphology, thermoelectric properties and wet-chemical doping of laser-sintered germanium nanoparticles[J]. Physics status solid (A), 2013, 210(1): 153-160. DOI: 10.1002/pssa.201228392.
[10] STOIB B, LANGMANN T, MATICH S, et al. Laser-sintered thin films of doped SiGe nanoparticles[J]. Applied physics letters, 2012, 100(23): 231907. DOI: 10.1063/1.4726041.
[11] CHANG H T, WANG C C, HSU J C, et al. High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials[J]. Applied physics letters, 2013, 102(10): 101902. DOI: 10.1063/1.4794943.
[12] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced materials, 2007, 19(8): 1043-1053. DOI: 10.1002/adma.200600527.
[13] NIKA D L, COCEMASOV A I, CRISMARI D V, et al. Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires[J]. Applied physics letters, 2013, 102(21): 213109. DOI: 10.1063/1.4807389.
[14] 王艳. 磁控溅射SiGe薄膜的制备工艺及性能研究[D]. 太原: 太原科技大学, 2011.
[15] MATOBA A, SASAKI K. Room temperature thermoelectric properties of epitaxially grown Si-Ge thin films on SOI substrates[J]. Materials transactions, 2010, 51(4): 767-770. DOI: 10.2320/matertrans.M2009318.
[16] MATOBA A, WATASE H, KITAI M, et al. Investigation of thermoelectric properties of Si/Ge multilayer with ultra- heavily B doping[J]. Materials transactions, 2008, 49(8): 1723-1727. DOI: 10.2320/matertrans.E-MRA2008813.
/
〈 |
|
〉 |